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Abstract

Test smells are defined as sub-optimal design choices developers
make when implementing test cases. Hence, similar to code smells,
the research community has produced numerous test smell detec-
tion tools to investigate the impact of test smells on the quality
and maintenance of test suites. However, little is known about the
characteristics, type of smells, target language, and availability of
these published tools. In this paper, we provide a detailed catalog
of all known, peer-reviewed, test smell detection tools.

We start with performing a comprehensive search of peer-reviewed
scientific publications to construct a catalog of 22 tools. Then, we
perform a comparative analysis to identify the smell types detected
by each tool and other salient features that include programming
language, testing framework support, detection strategy, and adop-
tion, among others. From our findings, we discover tools that de-
tect test smells in Java, Scala, Smalltalk, and C++ test suites, with
Java support favored by most tools. These tools are available as
command-line and IDE plugins, among others. Our analysis also
shows that most tools overlap in detecting specific smell types, such
as General Fixture. Further, we encounter four types of techniques
these tools utilize to detect smells. We envision our study as a one-
stop source for researchers and practitioners in determining the
tool appropriate for their needs. Our findings also empower the
community with information to guide future tool development.
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1 Introduction

Software testing is an essential part of the software development
life cycle. As part of the software development process, develop-
ers create and update their system’s test suite to ensure that the
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system under test adheres to the requirements and provides the
expected output. However, test code, similar to production code,
is subject to bad programming practices (i.e., smells), which ham-
per the quality and maintainability of the test suite [48]. Formally
defined in 2001 [67], the catalog of test smells has been steadily
growing throughout the years. While most test smells focus on
traditional Java systems, researchers have also studied the impact
of these smells on other programming languages, and platforms
[27, 55, 59]. With the growth of the test smell catalog, the research
community, in turn, has utilized these smells to study the impact
test smells have on the maintainability of test suites. These studies
show that test smells negatively impact the comprehension of a
test suite and increase change- and defect-proneness of the test
suite, thereby increasing its flakiness [63]. In addition to defining
test smells, researchers have also provided the community with
various tools to detect such test smells. Furthermore, research has
shown that early detection of bad smells reduces maintenance costs,
highlighting the importance of such detection tools.

With the growth of test smells studies, recent literature reviews
[35, 36] have been proposed to study various dimensions related
to these anti-patterns. These literature reviews have explored the
various definitions of test smells, empirical analysis of their sur-
vival, spread, refactoring, and their relationship with change and
bug proneness of source code. However, little is known about the
toolsets used to detect test smells. The availability of tools is vital
for software engineering researchers and practitioners. In research,
tools facilitate the reproducibility of studies while developers bene-
fit from improved productivity through tool adoption. Without a
thorough understanding of available tools and how these tools com-
pare to one another, it will be difficult to conduct future research
that uses the right toolset for a given research problem. Therefore,
our work complements these reviews by not only extracting all the
test smell detection tools published in peer-reviewed venues, but
also providing more in-depth details about them. To facilitate their
adoption, we compare and contrast multiple attributes of these
tools, such as supported smell types, target environment, detection
mechanisms, etc. Hence, our work provides a catalog for developers
and researchers to support the adoption of these tools.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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1.1 Goal & Research Questions

The goal of this study is to provide developers and researchers
with a one-stop source that offers a comprehensive insight into
test smell detection tools. The information in this study will allow
researchers to select the right tool for their research task and provide

data-driven advice on how test smell tools can be advanced through

future work. Through this study, the community will be better
equipped to determine the correct tool they need to utilize to satisfy
their requirement, along with the shortcomings of these tools. This
work also provides the research community with insight into areas
that require improved automation. Hence, we aim at addressing
the following research questions (RQs):

RQ1: What test smell detection tools are available to the

community, and what are the common smell types they sup-

port? This RQ investigates the volume of test smell detection tools
released by the research community. We answer this RQ by per-
forming an extensive and comprehensive search on six popular
digital libraries among the software engineering community. We
investigate the frequency of tool release, and the spectrum of test
smells detected by the tools.

RQ2: What are the main characteristics of test smell de-

tection tools? In this RQ, we examine the design-level features
that are common to test smell detection tools, such as platform
support and smell detection mechanisms. This RQ provides us with
details into how the research community constructs such tools and
provides insight into the development of future tools.

1.2 Contributions

Through this study, we provide the community of researchers and
practitioners with a view and insights on the history of the availabil-
ity of test smell detection tools. More specifically, our contributions
are outlined below:
• A catalog of 22, peer-reviewed, test smell detection tool publica-
tions, and publications that utilize these tools. These publications
provide an initial platform for future research in this area.
• A series of experiments highlighting the growth of such tools,
along with a comparison of key tool attributes.
• A discussion of how our findings provide insight into future
research areas in this field along with details that need to be con-
sidered when selecting a test smell detection tool.
• A replication package of our survey for extension purposes [1].

2 Research Methodology

Being a Systematic Mapping Study (SMS), our research explores
published scientific literature to gather information about a specific
topic in software engineering, and to provide a high-level under-
standing and/or answering exploratory research questions [21]. To
this extent, our SMS aims at proving a high-level understanding
of the existence of test smell detection tools, their characteristics,
and their adoption in academic studies. Prior studies in cataloging
detection-based tools, were associated with technical debt, bad
smells, bug localization, and architectural smells. Further, while
Garousi and Küçük [36] provide a list of test smell detection tools
as part of their SMS on test smells, our study aims to expand on
this listing. Hence, in this section, we describe the procedure we
adopt to search and select the relevant publications for analysis.

Table 1: The digital libraries queried in our study.

Digital Library URL

ACM Digital Library https://dl.acm.org/
IEEE Xplore https://ieeexplore.ieee.org/
Science Direct https://www.sciencedirect.com/
Scopus https://www.scopus.com/
Springer Link https://link.springer.com/
Web of Science https://webofknowledge.com/

In brief, our methodology consists of three phases– (1) planning,
(2) execution, and (3) synthesis. In the following subsections, we
elaborate on these phases.
2.1 Planning

In this phase, we detail our publications search strategy. In confor-
mance with systematic mapping studies, we utilize a specific set of
domain-specific (i.e., test smell related) keywords to search, in pop-
ular digital libraries, for publications that meet our requirements.
Digital Libraries. To locate publications for our study, we search
six digital libraries. These libraries, listed in Table 1, either con-
tain or index publications from computer science and software
engineering venues and are utilized by similar studies (e.g., [32]).
Inclusion/Exclusion Criteria. Inclusion and exclusion criteria
are crucial in pruning our search space, reducing bias, and retrieving
relevant peer-reviewed scientific publications. Selected publications
of these criteria become our starting point for manual filtering, to
see whether they fit in our study, i.e., propose or adopt a test smells
tool. The initial pool of publications also serves for: (1) backward
snowballing, i.e., analyzing publications cited by the selected pool;
and (2) forward snowballing, i.e., analyzing publications citing our
pool publications. Table 2 lists the inclusion and exclusion criteria
considered in this study. With regards to the time range, we did
not set a starting date. However, our end date was set to the end of
December 2020. Hence, the date range criterion allows the selection
of any tool as long as it appeared before December 31, 2020.

Table 2: Our inclusion and exclusion search criteria.

Inclusion Exclusion

Published in Computer Science Websites, leaflets, and grey literature
Written in English Published in 2021
Available in digital format Full-text not available online
Propose or use test smell detect tool Tools not associated with peer-reviewed papers

Search Keywords. To determine the optimal set of search key-
words, we conducted a pilot search on two well-known digital
libraries, i.e., IEEE and ACM. This process intends to identify rel-
evant words or synonyms utilized in test smell publications. We
performed multiple instances of the pilot search, where each in-
stance involved refinement of the keyword terms in the search
query. We conduct our query only on the title and abstract of the
publication. We decided to apply the search on a publication’s meta-
data instead of on the full-text to avoid false positives. The finalized
search string is presented below.

Title:("tool*" OR "detect*" OR "test smell" OR
"test smells") AND Abstract:("test smell" OR "test
smells" OR "test code" OR "unit test smell")

https://dl.acm.org/
https://ieeexplore.ieee.org/
https://www.sciencedirect.com/
https://www.scopus.com/
https://link.springer.com/
https://webofknowledge.com/
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2.2 Execution

In this phase, we detail how we process and filter the publications
we obtain from our digital library search. Our initial search of the
six digital libraries results in 436 publications, with ScienceDirect
resulting in the highest number of publications (126). Next, we em-
ploy a four-stage quality control process to filter out publications
that were not part of our inclusion criteria. Figure 1 depicts the
volume of publications filtered at each stage. This quality control
process involves three authors manually reviewing the publications
to determine if a publication can pass from one stage to another. The
first stage starts with removing duplicate and retracted publications;
74 publications were removed, and 362 candidate publications made
it to the next stage. In the second stage, we apply our inclusion and
exclusion criteria to the title and abstract. For instance, we discard
all publications that were not peer-reviewed or did not propose or
adopt a tool. This thorough procedure resulted in only including
54 publications. The third stage involves a full-text analysis of each
selected publication. Using our inclusion and exclusion criteria, we
retain only 30 publications. In the last stage, we perform the for-
ward and backward snowball sampling, resulting in 17 publications.
Therefore, we ended up with a final set of 47 publications.

2.3 Synthesis

This phase synthesizes the extracted data to answer our RQs. First,
we classify the primary set of publications into one of two types, i.e.,
tool development or tool adoption. Tool development publications
are studies that propose a test smell detection tool, either as part
of proposing a new catalog of smells or detecting existing smell
types. Tool adoption publications are studies that utilize an existing
test smell detection tool as part of their study design. Additionally,
we also classify studies by publication year and venue; this helps
with partly answering RQ1. For the remainder of RQ1 and RQ2, we
manually review the full-text of each tool development publication.
As part of this review, we evaluate each study based on concrete
evidence present in the publication (and its supporting artifacts, if
any) without any vague assertions. For each tool, we extract the
types of test smells the tool detects and other tool features, such as
supported programming language, testing framework, correctness,
etc. We elaborate further on the tool features in Section 3.2 when
presenting our findings for RQ2.

Finally, all RQ-related data collected during the publication re-
view task was peer-reviewed to ensure bias mitigation, with con-
flicts resolved through discussions. We utilized a spreadsheet to
hold the manually extracted data to facilitate collaboration during
the author-review process. The authors, participating in the filter-
ing stages and manual review, are experienced with this research.
They have published work in this area, including defining test smell
types, tool development, and adoption [55, 56].

3 Research Findings

In this section, we present the findings for our proposed RQs based
on the synthesis of the finalized set of 47 test smell tool detection-
related publications, which are composed of 22 publications that
propose new tools and 25 publications that adopt these tools.

3.1 RQ1: What test smell detection tools are available to

the community, and what are the common smell types

they support?

This RQ comprises of four parts. In the first part, we provide a
breakdown of the publications by publication date and venue. In
the second part, we present the tools identified in our systematic
search, while in the third part, we provide insight into the types of
test smells detected by the identified tools. Finally, the fourth part
looks at the programming languages supported by the test smells.

3.1.1 Publication Years & Venues

Figure 2 depicts the yearly breakdown of tool publications. The
first test smell tool, TRex [20], appeared in 2006. Since then, there
was a steady trend of one or two tools appearing every one or two
years, until 2018. The years 2019 and 2020 witnessed a notable in-
crease in tool-based publications compared to the prior years, with
approximately 51% of tool development and adoption publications
occurring in these two years. There can be many factors influencing
this recent hype. We have observed the following: The dynamic
nature of detection mechanisms of traditional state-of-the-art tools
made them require compilable projects with constraints over how
test files should be written and located. Therefore, traditional tools
are implemented to run as standalone applications or plugins in
Integrated Development Environments (IDEs). Besides being con-
strained to their environments, they are not intended to run on
large-scale software systems. However, the tools that appeared in
recent years were developed as APIs, facilitating their deployment
to mine software repositories. While their detection strategies carry
the false-positiveness of static analysis, they allowed the analysis
of a wide variety of software systems. Therefore, the number of
empirical publications, adopting these tools, has significantly in-
creased, reaching up to 16 in two years, higher than the number
of all previous tool adoption publications combined. These stud-
ies have explored various characteristics of test smells, including
co-occurrence, survivability, severity, refactoring, impact on flaky
tests, proneness to changes and bugs, etc. Next, in Figure 3, we pro-
vide a pictorial representation, in the form of a timeline, depicting
the release of the 22 test smell detection tools. Analyzing the smell
types detected by each tool, we specify, in green, the total number
of smell types detected by each tool. Additionally, we also indicate,
in red, the number of net new test smell types and the number of
existing smell types in blue. Reading Figure 3 from left to right
(i.e., the oldest tool to newest), a smell type first introduced by a
tool is in blue text, while its subsequent appearance in another tool
is in red. For example, the General Fixture smell first appears in
TestQ (hence it is shown in blue text), this smell next appears in
the unnamed tool (hence it is shown in red text), and so on.

In terms of venues, looking at the complete set of primary pub-
lications, 40 publications are associated with a conference/work-
shop/symposium,while seven publications appear in journals. Look-
ing at just tool development publications, 20 of these publications
are associated with a conference/workshop/symposium. Finally,
the most popular venue for a tool development publication is the
Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, with four publications.
The complete breakdown is available in our replication package.
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Figure 2: Yearly breakdown of tool publications.

3.1.2 Test Smell Detection Tools

In this part of the RQ, based on available documentation (i.e.,
full-text of the publication and any of its supporting artifacts), we
provide an overview of each tool, from the oldest to the most recent.

Released in 2006 is TRex by Baker et al. [20]. This tool analyzes
for TTCN-3 test suites for issues specific to this testing framework.
The tool also provides developers with the ability to correct identi-
fied issues. TestLint, released by Reichhart et al. [59] in 2007, is a
rules-based tool that detects 27 quality violations in the unit test
code in Smalltalk systems. In 2008, Breugelmans and Van Rompaey
releasedTestQ [27]. The tool provides a visual interface for develop-
ers to explore test suites and detects 12 test smells in C++ test suites.
The tool facilitates customizations such as smell prioritization.

In 2009 Koochakzadeh and Garousi released TeReDetect [45]
(Test Redundancy Detection), a test redundancy detection tool for
JUnit tests that work in conjunction with a code coverage tool. The

authors then released TeCReVis (Test Coverage and Test Redun-
dancy Visualization) in 2010 [44], an Eclipse plugin that provides
developers with a visualization of a project’s test coverage and test
redundancy. Bavota et al. [22] released an unnamed test smell
detection tool in 2012. The tool detects nine test smell types in Java
test suites. The tool prioritizes recall over precision resulting in a
long list of potential issues and thereby require manual reviews.

2013 saw the release of two detection tools. Greiler et al. in-
troduce TestHound [39]. This static analysis tool focuses on test
smells related to test fixtures in Java test suites and recommends
refactorings to address the detected issues. In a user study, the
authors show that developers are appreciative of the tool with re-
gards to understanding test fixture code. Greiler et al. improve on
their prior tool by releasing TestEvoHound [40]. This improved
tool analyzes Git or SVN repositories to analyze the evolution of a
system’s test fixture code. As part of the analysis process, the tool
does a checkout and build of each revision of the project and then
passes the revision to TestHound to detect test fixture smells.

Zhang et al. released DTDetector, a JUnit supported test depen-
dency detection tool in 2014 [75]. Also released in 2014 by Huo et
al. [42], is OraclePolish, which utilizes a dynamic tainting-based
technique for the detection of two test smell types in JUnit test
suites. The tool’s empirical evaluation demonstrates that it can
detect both brittle assertions and unused inputs in real tests at a
reasonable cost. In 2015, Bell et al. released ElectricTest [24], an-
other dependency detection tool for JUnit test suites. The authors
demonstrate that their tool outperforms DTDetector in test paral-
lelization. Also released in 2015 was PolDet by Gyori et al. [41],
a test pollution smell detection tool. The tool analyses heap-graphs
and file-system states during test execution for instances of state
pollution (e.g., tests reading/writing shared resources).

Palomba et al. [52] released Taste (Textual AnalySis for Test
smEll detection) in 2018. This tool utilizes information retrieval
techniques to detect three test smell types in Java test suites. Results
from an empirical study show that the tool is 44% more effective
in detecting test smells when compared to structural-based detec-
tion tools. Also released in 2018 is PraDeT, by Gambi et al. [34].
This tool detects manifest test dependencies and can analyze large
projects containing a vast quality of tests.
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Figure 3: Timeline of the release of test smell detection tools by the research community.

There were four test smell detection tools released in 2019. ts-
Detect, released by Peruma et al. [56], detects a total of 19 test
smell types. The smell types comprise of 11 newly introduced types
and 8 existing types. The tool utilizes an abstract syntax tree to
analyzes JUnit test suites and reports an average F-score of 96.5%
for each smell type. Further, one smell type (i.e., Default Test) is
exclusive to Android applications, while the remaining types apply
to all Java systems. SoCRATES (SCala RAdar for TEst Smells) by
De Bleser et al. [30] detects the presence of six smell types in Scala
systems using static analysis. Virginio et al. released JNose Test, a
tool with the ability to detect 21 test smell types in Java systems.
Additionally, the tool also provides ten metrics around code cover-
age. Biagiola et al. released TEDD (Test Dependency Detector), a
tool to detect test dependencies in end-to-end web test suites [25].
The tool presents a list of manifest dependencies as output from
its execution. Delplanque et al. [31] released DrTest, a tool that
detects Rotten Green Test smell in the Pharo ecosystem.

2020 saw the release of two IDE plugins and one command-line
tool. Lambiase et al. [46] released DARTS (Detection And Refac-
toring of Test Smells), a plugin that utilizes information retrieval to
detect three smell types. The tool also offers refactoring support.
RAIDE, an Eclipse plugin was released by Santana et al. [60]. This
plugin detects and provides semi-automated refactoring support
for two test smell types in JUnit test suites. Martinez et al. [47]
released RTj, a command-line tool that supports the detection and
refactoring of Rotten Green Test smells.

Finally, when compared against the catalog of Garousi and Küçük
[36], our dataset contains ten of the 12 listed tools. The tools ex-
cluded from our study are not proposed in peer-reviewed literature.
The common set of tools are indicated in RQ2.

3.1.3 Detected Test Smell Types

Next, we examine the types of test smells detected by the identi-
fied tools in our set. For completeness, we provide, in Table 3, brief
definitions for each unique smell type detected by the identified
tools. We also provide their references for more details. When ana-
lyzing the definitions of these smell types, we observe that there
are smells that are associated with more than one name, but with a
similar description of its symptoms. For example, Assertionless, As-
sertionless Test, and Unkown Test define the absence of an expected
assert in the test method. Similarly, Duplicated Code and Test Code

Duplication define the same issue of the existence of code clones.
Looking at our list of tools, TestLint detects the highest number

of smell types (26). JNose Test is the second highest with 21 detected
smell types, followed by tsDetect (19 smell types). Furthermore,
from Figure 3, it is common to see various tools detecting the same
smell types. Per analogy to code smells, while there is an agreement
on the meanings of smells, there is no consensus on identifying
them. Therefore, it is evident to see various tools containing dif-
ferent detection strategies for similar smell types. Hence, in this
analysis, we look at the overlap of detected smell types by the tools
in our dataset. The smells, detected by the tools TestLint, Oracle-
Polish, TRex, and PolDet are unique to the respective tool. The
remaining 16 tools share the detection of some overlapping smells.

In Table 4, we identify the overlapping of smells across 16 tools.
For each tool, we indicate if the tool detects a specific smell by the√
symbol. From this table, we observe that the three most common

smell types are General Fixture, Eager Test, and Assertion Roulette,
which are respectively detected by 9, 7, and 6 tools.

3.1.4 Supported Programming Languages

Next, we look at the programming languages supported by the
various smell types we identify in this study. From Table 5, we
observe that the smell types support four programming languages,
specifically Java, Scala, Smalltalk, and C++. From this set, Java is
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Table 3: Definition of the test smells detected by the tools in our dataset.

No. Test Smell Name Abbreviation Definition Ref.

01 Abnormal UTF-Use AUU Overriding the default behavior of the testing framework by test-suite. [59]
02 Anonymous Test AT A test method with a meaningless and unclear method name. [59]
03 Assertion Roulette AR A test method with multiple assertions without explanation messages. [22]
04 Assertionless AL A test that is acting to assert data and functionality but does not. [27]
05 Assertionless Test ALT A test that does not contain at least one valid assertion. [59]
06 Brittle Assertion BA A test method that has assertions that check data input. [42]
07 Comments Only Test COT A test that has been put into comments. [59]
08 Conditional Test Logic CTL A test method that contains a conditional statement as a prerequisite to executing the test statement. [56]
09 Constructor Initialization CI A test class that contains a constructor. [56]
10 Control Logic ConL A test method that controls test data flow by methods such as debug or halt. [59]
11 Dead Field DF When a class has a field that is never used by any test methods. [39]
12 Default Test DT Default or an example test suite created by Android Studio. [56]
13 Dependent Test DepT A test that only executes on the successful execution of other tests. [72]
14 Duplicate Assert DA Occurs when a test method has the exact assertion multiple times within the same test method. [56]
15 Duplicated Code DC A test method that has redundancy in the code. [27]
16 Eager Test ET A test method that calls several methods of the object to be tested. [22]
17 Early Returning Test ERT A test method that returns a value too early which may drop assertions. [59]
18 Empty Method Category EMC A test method with an empty method category. [59]
19 Empty Shared-Fixture ESF A test that defines a fixture with an empty body. [59]
20 Empty Test EmT A test method that is empty or does not have executable statements. [56]
21 Empty Test-Method Category ETMC A test method with an empty test method category. [59]
22 Exception Handling EH Occurs when custom exception handling is utilized instead of using JUnit’s exception handling feature. [56]
23 For Testers Only FTO A production class that contains methods that are only used for test methods. [22]
24 General Fixture GF This smell emerges when setUp() fixture creates many objects, and test methods only use a subset. [22]
25 Guarded Test GT A test that has conditional branches like ifTrue:aCode or ifFalse:aCode. [59]
26 Ignored Test IgT A test method that uses an ignore annotation which prevents the test method from running. [56]
27 Indented Test InT A test method that contains a large number of decision points, loops, and conditional statements. [27]
28 Indirect Testing IT A test that interacts with a corresponding class by using another class. [22]
29 Lack of Cohesion of Methods LCM When test methods are grouped in one test class, but they are not cohesive. [39]
30 Lazy Test LT Occurs when multiple test methods check the same method of production object. [22]
31 Likely Ineffective Object-Comparison LIOC A test that performs a comparison between objects will never fail. [59]
32 Long Test LoT A test with many statements. [59]
33 Magic Number Test MNT A test method that contains undocumented numerical values. [56]
34 Max Instance Variables MIV A test method that has a large fixture. [59]
35 Mixed Selectors MS Violates test conventions by mixing up testing and non-testing methods. [59]
36 Mystery Guest MG A test that uses external resources, such as a database, that contains test data. [22]
37 Obscure In-line Setup OISS A test that has too much setup functionality in the test method. [39]
38 Overcommented Test OCT A test with numerous comments. [59]
39 Overreferencing OF A test that causes duplication by creating unnecessary dependencies. [59]
40 Proper Organization PO Bad organization of methods [59]
41 Redundant Assertion RA A test method that has an assertion statement that is permanently true or false. [56]
42 Redundant Print RP A test method that has print statement. [56]
43 Resource Optimism RO A test that make an assumption about the existence of external resources. [22]
44 Returning Assertion RA A test method that has an assertion and returns a value. [59]
45 Rotten Green Tests RT Occurs when intended assertions in a test are never executed. [31]
46 Sensitive Equality SE Occurs when an assertion has an equality check by using the toString method. [22]
47 Sleepy Test ST Occurs when a test method has an explicit wait. [56]
48 Teardown Only Test TOT Exists when a test-suite is only specifying teardown. [59]
49 Test Code Duplication TCD Occurs when code clones contained inside the test. [22]
50 Test Maverick TM Exists when a test class has a test method with an implicit setup; however, the test methods are independent. [39]
51 Test Pollution TP Test that introduces dependencies such as reading/writing a shared resource. [41]
52 Test Redundancy TR Occurs when the removal of a test does not impact the effectiveness of the test suite. [44]
53 Test Run War TRW A test that fails when more than one programmer runs them. [22]
54 Test-Class Name TCN A test that has a class with a meaningless name. [59]
55 Test-Method Category Name TMC A test method has a meaningless name. [59]
56 Transcripting Test TT A test that is printing and logging to the console. [59]
57 TTCN-3 Smells TTCN Collection of smells specific to TTCN-3 test suites. [20]
58 Unclassified Method Category UMC A test method that is not organized by a method category. [59]
59 Under-the-carpet Assertion UCA A test that has assertions in the comments. [59]
60 Under-the-carpet failing Assertion UCFA A test method that has failing assertions in the comments. [59]
61 Unknown Test UT A test method without an assertion statement and non-descriptive name. [56]
62 Unused Inputs UI Inputs that are controlled by the test. [42]
63 Unused Shared-Fixture Variables USFV Occurs when a piece of the fixture is never used. [59]
64 Unusual Test Order UTO A test that is calling other tests explicitly. [59]
65 Vague Header Setup VHS A field that is initialized in the class header but not explicitly defined in code. [39]
66 Verbose Test VT Test code that is complex and not simple or clean. [27]
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Table 4: Distribution of test smells detected by the test smell detection tools.

Tool \ Smell Type AL AR CI CTL DA DC DepT DF DT EH EmT ET FTO GF IgT InT IT LCM LT MG MNT OISS RA RO RP RT SE ST TM TR TRW UT VHS VT

DARTS [46] √ √ √

DrTest [31] √

DTDetector [75] √

ElectricTest [24] √

JNose Test [72] √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

PraDeT [34] √

RAIDE [60] √ √

RTj [47] √

SoCRATES [30] √ √ √ √ √ √

Taste [52] √ √ √

TeCReVis [44] √

TEDD [25] √

TeReDetect [45] √

TestEvoHound [40] √ √ √ √ √ √

TestHound [39] √ √ √ √ √ √

TestQ [27] √ √ √ √ √ √ √ √ √ √ √ √

tsDetect [56] √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

Unnamed [22] √ √ √ √ √ √ √ √ √ √

Total 2 6 2 2 3 2 5 2 2 2 3 7 2 9 1 1 2 4 4 5 2 2 2 2 2 2 5 2 2 2 1 2 2 2

Table 5: Distribution of Test Smells Per Programming Languages.

Programming Language Supported Test Smell Types Literature Usage

(01) Assertion Roulette (AR) (11) Eager Test (ET) (21) Magic Number Test (MNT) (31) Test Maverick (TM) [20, 49, 50, 73, 74]
(02) Assertionless (AL) (12) Empty Test (EmT) (22) Mystery Guest (MG) (32) Test Pollution (TP) [22, 39, 40, 44, 75]
(03) Brittle Assertion (BA) (13) Exception Handling (EH) (23) Obscure In-line Setup Smell (OISS) (33) Test Redundancy (TR) [23, 24, 41, 51, 65]
(04) Conditional Test Logic (CTL) (14) For Testers Only (FTO) (24) Redundant Assertion (RA) (34) Test Run War(TRW) [34, 55, 58, 63, 72]

Java (05) Constructor Initialization (CI) (15) General Fixture (GF) (25) Redundant Print (RP) (35) TTCN-3 Smells (TTCN) [25, 37, 38, 52, 61]
(06) Dead Field (DF) (16) Ignored Test (IgT) (26) Resource Optimism (RO) (36) Unknown Test (UT) [46, 56, 64, 70, 71]
(07) Default Test (DT) (17) Indented Test (InT) (27) Rotten Green Tests (RT) (37) Unused Input (UI) [26, 43, 53, 54, 62]
(08) Dependent Test (DepT) (18) Indirect Test (IT) (28) Sensitive Equality (SE) (38) Vague Header Setup(VHS) [33, 42, 47, 57, 66]
(09) Duplicate Assert (DA) (19) Lack of Cohesion of Test Method (LCM) (29) Sleepy Test (ST) (39) Verbose Test (VT) [45, 60]
(10) Duplicated Code (DC) (20) Lazy Test (LT) (30) (31) Test Code Duplication (TCD)

Scala (01) Assertion Roulette (AR) (03) Exception Handling (EH) (05) Mystery Guest (MG) [29, 30]
(02) Eager Test (ET) (04) General Fixture (GF) (06) Sensitive Equality (SE)
(01) Abnormal UTF-Use (AUU) (08) Empty Shared-Fixture (ESF) (15) Under-the-carpet failing Assertion (UCFA) (22) Test-Class Name (TCN)
(02) Anonymous Test (AT) (09) Empty Test-MethodCategory (ETMC) (16) Overcommented Test (OCT) (23) Test-MethodCategory Name (TMC)
(03) Assertionless Test (AL) (10) Guarded Test (GT) (17) Overreferencing (OF) (24) Transcripting Test (TT)
(04) Comments Only Test (COT) (11) Likely ineffective Object-Comparison (LIOC) (18) Proper Organization (PO) (25) Unclassied MethodCategory (UMC)

SmallTalk (05) Control Logic (ConL) (13) Long Test (LoT) (19) Returning Assertion (RA) (26) Under-the-carpet Assertion (UCA) [31, 59]
(06) Early Returning Test (ERT) (12) Max Instance Variables (MIV) (20) Rotten Green Tests falls (RT) (27) Unused Shared-Fixture Variables (USFV)
(07) Empty MethodCategory (EMC) (13) Mixed Selectors (MS) (21) Teardown Only Test (TOT) (28) Unusual Test Order (UTO)
(01) Assertion Roulette (AR) (04) Eager Test (ET) (07) General Fixture (GF) (10) Mystery Guest (MG)

C++ (02) Assertionless Test (ALT) (05) Empty Test (EmT) (08) Indented Test (InT) (11) Sensitive Equality (SE) [27]
(03) Duplicated Code (DC) (06) For Testers Only (FTO) (09) Indirect Test (IT) (12) Verbose Test (VT)

the most popular programming language for test smell support,
supporting 39 smell types, followed by Smalltalk (28 smell types). In
Table 5, we also list the publications (tool and tool adoption) in our
dataset that analyze these smell types. From this, we observe that a
subset of the Java-supported test smells also support Scala unit test
code. Although the developed XUnit guidelines can be applied to
various languages [48], including dynamically typed ones such as
JavaScript and Python, we did not locate tools that analyzes test
suites written in these languages, which represents a noticeable
limitation in terms of supporting the high quality of test suites.

Summary. While there has been a steady release of test smell
detection tools over the years, there has been an uptick in both
tool development and adoption recently, specifically in 2019
and 2020. While most of the tools detect test smells occurring
in Java test suites, there is a lack of support for other popular
languages, such as JavaScript and Python.

3.2 RQ2: What are themain characteristics of test smell de-

tection tools?

This RQ comprises of two parts that examine the common charac-
teristics of test smell detection tool. The first part examines specific
high-level features of such tools, while the second part looks at the
types of smell detection techniques implemented by the tools.

3.2.1 Common Characteristics

While the number and types of test smells detected by the tools
are essential in selecting an appropriate tool, there are other features
that can be considered to make a more informed decision. Similar
to prior literature [32, 36], we review our set of test smell detection
tools with respect to the following characteristics:

(1) Programming Language - This feature comprises of the pro-
gramming language that the tool is implemented with and the
programming language(s) the tool supports.
(2) Supported Test Framework - These frameworks provide an
environment for developers to write unit tests. As part of the detec-
tion strategy the tool may be depended on the presence of specific
framework API’s in the test code.
(3) Correctness - Provides insight into how accurately the tool
can detect smells. We look for instances where the tool authors
provide values for precision and recall or F-measure.
(4) Detection Technique - Strategy the tool utilizes to analyze
test code for the presence of smells.
(5) Interface - Indicates how developers interact with the tool.
(6) Usages Guide Availability - Indicates if documentation on
how to use the tool is available (either in the tool’s publication or
website).
(7) Adoption in Research Studies - This provides insight into
the popularity of the tool in the research community.
(8) Tool Website - Supplementary documentation about the tool,
such as (where available) its source code repository, installation/ex-
ecution instructions, etc.
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Table 6: Characteristics of test smell detection tools.

Programming Language

Tool

Implemented Analyzed

Supported

Test Framework

Correctness

Detection

Technique

Interface

Usage

Guide

Adoption in

Studies

Tool

Website

DARTS
‡ [46] Java Java JUnit F-Measure: 62%-76% Information Retrieval IntelliJ plugin Yes – [3]

DrTest [31] Smalltalk Pharo ∇ SUnit UNK Rule
Dynamic Tainting Pharo plugin Yes – [4]

DTDetector
★ ⋄ [75] Java Java JUnit UNK Dynamic Tainting Command-line Yes – [5]

ElectricTest [24] Java Java JUnit UNK Dynamic Tainting Command-line No – UNK
JNose Test [70] Java Java JUnit UNK Rule Local web application Yes [71, 72] [6]
OraclePolish

★ [42] Java Java JUnit UNK Dynamic Tainting Command-line Yes – [7]
PolDet [41] Java Java JUnit UNK Dynamic Tainting UNK No – UNK
PraDeT [34] Java Java JUnit UNK Dynamic Tainting Command-line Yes – [8]
RAIDE

‡ [60] Java Java JUnit UNK Rule Eclipse plugin Yes – [10]

RTj
‡ [47] Java Java JUnit UNK Rule

Dynamic Tainting Command-line Yes – [11]

SoCRATES [30] Scala Scala ScalaTest Precision: 98.94%
Recall: 89.59% Rule IntelliJ plugin Yes [29] [12]

Taste [52] UNK Java JUnit Precision: 57%-75%
Recall: 60%-80% Information Retrieval UNK No [54] UNK

TeCReVis
★ [44] Java Java JUnit UNK Metrics

Dynamic Tainting Eclipse plugin † Yes – [14]

TEDD [25] Java Java JUnit Precision: 80%
Recall: 94% Information Retrieval Command-line Yes [26] [13]

TeReDetect
★ [45] Java Java JUnit UNK Metrics

Dynamic Tainting Eclipse plugin † Yes – [14]

TestEvoHound [40] Java Java JUnit, TestNG UNK Metrics UNK No – UNK
TestHound

‡★ [39] Java Java JUnit, TestNG UNK Metrics Desktop application No – [15]

TestLint
★ [59] Smalltalk Smalltalk Sunit UNK Rule

Dynamic Tainting UNK Yes – [16]

TestQ
★ [27] Python C++, Java CppUnit, JUnit,

Qtest UNK Metrics Desktop application Yes – [17]

TRex
‡ §★ [20] Java Java TTCN-3 UNK Rule Eclipse plugin Yes [49, 50, 73, 74] [18]

tsDetect [56] Java Java JUnit Precision: 85%-100%
Recall: 90%-100% Rule Command-line Yes [43, 55, 61, 64]

[33, 53, 57, 62] [19]

Unnamed [22] UNK Java JUnit Precision: 88%
Recall: 100% Rule Command-line No [23, 51, 65, 66]

[37, 38, 53, 58, 63] UNK

‡ Provides support for refactoring. | † Embedded inside the CodeCover [2] plugin. | § Enhanced version released in [49]. | ★ Included in the catalog of Garousi and Küçük [36].
⋄ Also known as ‘TestIsolation’ in the catalog of Garousi and Küçük [36]. | ∇ Pharo is a dialect of Smalltalk.

Table 6 detail our findings for each tool. In case we cannot locate
the needed information, we label it as ‘UNK’ in the table.

It is evident from Table 6 that the majority of test smell detection
tools (≈ 86%) focus on detecting test smells exclusively for Java-
based systems and are mostly focused on identifying any deviation
from the guidelines of JUnit testing framework. This further cor-
roborates our prior RQ finding where we show that most test smell
types are geared towards Java systems, and thereby most research
around test smells focuses on datasets composed of Java systems.
Additionally, there are three tools, namely TestQ, TestHound, and
TestEvoHound, which support two or more testing frameworks.
In terms of correctness, most tools do not publish details around
their accuracy. Additionally, the majority of tools do not report on
performance speeds and execution times. Our findings show that
only six tools published their detection accuracy, in terms of preci-
sion, recall or F-measure. From this set, only DARTS, Taste, and
tsDetect report values for each smell type it supports; hence the
correctness score is reported as a range. From our set of 22 detec-
tion tools, only five tools provide refactoring support. TestHound
provides textual information on smells correction. While RAIDE
provides a semi-automated correction, RTj, DARTS and TRex pro-
vide the automated refactoring of their detected smells. However,
none of these tools provide details concerning the accuracy of their
refactoring capabilities. From detection standpoint, we observe that
tools, focusing on test dependency and rotten green test smells,
use a dynamic detection strategy, while most static analysis-based
smells prefer to utilize a rules-based approach. We discuss in detail

the different techniques later on. In terms of adoption in research
studies, only seven of the tools have been utilized by the research
community to study test smells.

Next, in terms of how developers run/interact with these tools,
there are two categories– graphical user interface (GUI) and command-
line (i.e., non-GUI) tools. Most of the GUI tools are in the form of
IDE plugins or web and desktop applications. In terms of tool avail-
ability, we searched for a link to the tool website or binaries. In
case the link is absent or no longer functional, we contacted the
publication’s corresponding author. From these 22 publications, we
were able to only locate 17 tools. It should be noted that, except for
TestLint, the website for these 17 tools points to the tool’s source
code repository. Further, when examining the project repositories,
we observe that tsDetectwas themost forked repository (21 forks).
Furthermore, an examination of a tool’s publications, website, and
the README file in the source code repository (where available)
yields only 16 tools presenting guidelines on how to setup and/or
execute the tool. Finally, from this set, only tsDetect and the tool
by Bavota et al. [22] show a high adoption rate, having been used
in at least eight other studies. The majority of the tools are only
limited to the studies to which they were first introduced.

3.2.2 Smell Detection Techniques

Each tool represents an implementation of a smell detection
strategy. Each detection strategy reflects an interpretation of how
the smell type manifests in the source code, i.e., how the smell
symptoms can be identified. Our analysis shows that, while most
of the tools in our study rely on static analysis of source code,
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some tools identify smells through dynamic analysis. These detec-
tion strategies can be grouped into four categories, namely Metrics,
Rules/Heuristic, Information Retrieval, and Dynamic Tainting.With
this clustering of strategies, we aim to familiarize future smell detec-
tion tool researchers/developers with smell detection techniques.

Metrics. The use of metrics to profile smells, is one of the early
techniques, and popular ones, for all code smells in general. In a
nutshell, the smell symptoms are measured through their impact
on structural and semantic measurements, where their values go
beyond pre-defined threshold. These metrics, and their correspond-
ing threshold values, are combined into a rules-based tree to make
a binary decision, of whether the code under analysis suffers from
a smell or not. In a typical metrics-based smell detection approach,
the source code is parsed and converted into an abstract syntax
tree (AST). This AST is then subjected to a metrics-based analysis
to identify and capture the test smells. For instance, Van Rompaey
et al. [69], utilize metrics such as Number of Object Used in setup,
Number of Production-Type, Number of Fixture Objects, Number
Of Fixture Production Types, and Average Fixture Usage to detect
smells such as General Fixture and Eager Test. The threshold used
are chosen by the user or empirically derived from a representative
set.

Rules/Heuristic. Rules or heuristics smell detection augments
the metrics-based techniques with patterns that can be found in
the source code. The smell is detected when the input matches a
pre-defined set of metric thresholds with the existence of some
code patterns. For example, the Assertion Roulette smell is detected
by defining a heuristic that checks whether a test method contains
several assertion statements without an explanation message as a
parameter for each assertion method.

Information Retrieval. In this technique, the main steps in-
clude extracting information/content from the test code and nor-
malizing it. As part of the extraction process, the textual content
from each JUnit test class (e.g., source code identifier and source
comments) are taken as the necessary features for identifying the
test smells. These characteristics are normalized via multiple text
pre-processing steps. These steps include stemming, decomposing
identifier names, stop word, and programming keyword removal.
The normalized text is then weighted using Term Frequency and
Inverse Document Frequency. The end-result is applying machine
learning algorithms to extract textual features that can discriminate
between classes, i.e., smell types.

Dynamic Tainting. It monitors the source-code while it exe-
cutes. Dynamic tainting enables the analysis of the actual data from
the code based on run-time information. In particular, it works
in two steps: (1) run the source-code along with predefined taint
value/mark (i.e., user input), and (2) reason which executions are
affected by that value/mark.

Our categorization of the tools, in our study, based on the four
smell detection techniques are shown in Table 6. The Rule/Heuristic-
based technique is a frequently adopted detection technique as the
definition for most smells are based on well-defined rules [48, 67].
The metric-based mechanism is less frequently utilized due to: (1)
not all known metrics proposed by [27, 39, 68, 69] have the ability
to detect all test smells, since they can go beyond traditional design
anomalies, and (2) the reliance on determining an appropriate set
of thresholds is considered to be a significant challenge. Looking at

tools that utilize a dynamic-based detection technique, we observe
that most test dependency and rotten green test detection tools
utilize this technique. Finally, DARTS, Taste, and TEDD utilize
Information Retrieval techniques. However, as these tools rely on
source code feature extraction, the lack of such information could
affect the detection accuracy [52].

Summary. JUnit is the most popular testing framework sup-
ported by test smell detection tools, with most static analysis
based tools opting to utilize a rules-based detection strategy
to identify smells. Even though most of the tools publish their
source code, information about the tool’s accuracy is seldom
available. Our analysis only shows that only six tools publish
their scores related to correctness.

4 Discussion

As a systematic mapping study, our findings provide a high-level
understanding of the current state of test smell detection tools.
In brief, as seen from our RQ findings, the research community
has produced many test smell detection tools that support the
detection of various test smell types. These tools, in turn, have been
utilized in studies on test smells to understand how they influence
software development. However, our findings also demonstrate
areas of concern and expansion in this field. In this section, through
a series of takeaways, we discuss how our findings can support the
research and developer community in selecting the right tool as
well as provide future directions for implementing and maintaining
future test smell tools.
Takeaway 1: Standardization of smell names and definitions.

From RQ1, we observe an overlap of the smell types detected by
the tools. For instance, Assertion Roulette is detected by six JUnit
supported tools. However, the implementation of the detection rules
may vary between these tools. Additionally, there can be instances
where some test smell types with the same/similar definitions are
known by different names. This fragmentation of smell definitions
is not unique to test smells; Sobrinho et al. [28] experience this
in code smells. This phenomenon provides the opportunity for
future research in this area to compare and contrast such smell
types. The agreement on smells definitions, does not necessarily
induce similar interpretations. Since there is no consensus on how
to measure smells, each smell type can be identified using different
detection strategies, and the choice of the strategy becomes part of
the developer’s preferences.
Takeaway 2: Improve support for non-Java programming

languages and testing frameworks. While our findings from
RQ1 show the existence of multiple test smell detection tools, our
RQ2 findings show that most of these tools are limited to support-
ing Java systems that utilize the JUnit testing framework, thereby
narrowing test smell research to Java systems. Hence, restricting re-
search to a single environment/language will not accurately reflect
reality. While it can be argued that as most test smells are based on
xUnit guidelines [48] research findings on Java systems can carry
over to other similar languages (e.g., C#), actual practitioners of
non-Java systems gain no benefit without a tool to use in their
development workflow. Furthermore, recent trends have shown a
rise in the popularity of dynamically typed programming languages
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(e.g., Python and JavaScript) [9] giving more urgency for the re-
search community to construct tools that support non-traditional
research languages.
Takeaway 3: Do not reinvent the wheel. Researchers/practi-
tioners need to evaluate if implementing another detection tool
is necessary for their specific needs or if modifying an existing
tool would suffice. Reusing existing tools will not only save ef-
fort, but also develops more mature and robust frameworks. For
instance, Spadini et al. [61] integrate tsDetect into a code quality
monitoring system, while the tool implemented by Tufano et al.
[66], HistoryMiner, utilizes the tool of Bavota et al. [22] to detect
test smells in the lifetime of a project. Additionally, some of the
tools in our dataset are based on other tools in the dataset. For
instance, JNose Test and RAID are built on top of tsDetect and
DARTS is based on Taste. It is important that, when introducing
new tools, tool maintainers should design their tools to be ready for
customization. For instance, Spadini et al. [64] customize tsDetect
by introducing thresholds to meet their research objective. This
can help reduce the release of near-duplicate tools. It also further
strengthens the case for the importance of public availability of a
tool’s source code. Having access to the code enables the improve-
ment of the tool’s quality. It also facilitates extensions in improving
current detection strategies or introducing the detection of new
smell types, which, in the long run, improves the tool’s usefulness.
Takeaway 4: Improve transparency on the quality of tools.

As reported in RQ2, only a few tools report on the correctness of the
tool. Furthermore, clarity around bias mitigation is not completely
addressed for the tools that do report correctness scores. While our
objective here is not to discredit the validity of the current set of
test smell detection tools, we only highlight inconsistencies that
might lead to research studies obtaining varying results based on
the tool in use. As stated by Panichella et al. [53], there is a need for
a community-maintained gold-set/standard of smelly test files to
validate the current and future smell detection tools. We understand
that the process involved in the creation of a community-curated
gold-set might be time-consuming. Hence, in the meantime, we
recommend that the peer-review process be adjusted, such that
providing metrics for precision and recall at the smell type level
(instead of an overall tool accuracy score) along with the evaluation
dataset is made mandatory.
Takeaway 5: Expand from just detecting test smells to inter-

active refactoring.

Granted that the primary purpose of these tools is the detection
of test smells, developers will also immensely benefit from sug-
gested refactoring templates for each smell type. While there have
been initial efforts to include such functionality in detection tools,
it does not generalize to the current popular detected smells, and
more research is needed to elaborate on their ability to appropri-
ately change the test files without introducing any regression.

5 Conclusion and Future Work

This study identifies 22 test smell detection tools made available by
the research community through a comprehensive search of peer-
reviewed scientific publications. As part of our analysis, we identify
the smell types detected by these tools and highlight the smell
types that overlap. Additional comparisons between these tools
show that most of these tools support the JUnit framework, and

while the source code is made available, details around the tool’s
detection correctness are not always made public. We envision our
findings act as a one-stop source for test smell detection tools and
empower researchers/practitioners in selecting the appropriate tool
for their requirements. Future work in this area includes a hands-on
evaluation of each tool to determine the extent to which tools detect
common smell types and create a benchmark for such smell types.
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