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ABSTRACT

Community smells represent symptoms of sub-optimal organiza-
tional and social issues within software development communities
that often lead to additional project costs and reduced software qual-
ity. Previous research identified a variety of community smells that
are connected to sub-optimal patterns under different perspectives
of organizational-social structures in the software development
community. To detect community smells and understanding the
characteristics of such organizational-social structures in a project,
we propose csDetector, an open source tool that is able to automat-
ically detect community smells within a project and provide rele-
vant socio-technical metrics. csDetector uses a machine learning-
based detection approach that learns from various existing bad
community development practices to provide automated support in
detecting related community smells. We evaluate the effectiveness
of csDetector on a benchmark of 143 open source projects from
GitHub. Our results show that the csDetector tool can detect ten
commonly occurring community smells in open software projects
with an average F1 score of 84%. csDetector is publicly available,
with a demo video, at: https://github.com/Nuri22/csDetector

CCS CONCEPTS

• Software and its engineering → Collaboration in software

development; • Social and professional topics;
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1 INTRODUCTION

Software engineering is by nature a social activity in which devel-
opers interact with each other to build a software product. The 
organizational social structure in a software development commu-
nity (e.g., the interactions and collaborations among developers), is 
an essential prerequisite for a successful software product. However, 
project community structure may face various communication and 
collaboration challenges, including different cultural backgrounds 
[12, 32], toxic communications, and differences in expertise lev-
els or power distance [10, 11]. Such circumstances are known as 
community smells [34]. Community smells are tightly related to 
sub-optimal organizational and social issues that negatively impact 
the organizational health of the project. Prior research showed that 
community smells can be successfully detected using various heuris-
tics such as social network connectivity characteristics, developers 
contributions, geographic dispersion, etc. [1, 2, 9, 38].

Community smells result into social debt [9, 33, 36] and often
lead to software quality degradation [4, 28], an extra unforeseen
cost to a software project by wasted resources (e.g., time), and can
even lead to project failures. Hence, detecting community smells
is of crucial importance to keep a healthy development team and
deliver quality software [1, 6, 36]. In our previous work [1, 2],
we found that various social network connectivity metrics (e.g.,
social network degree centrality, density and graph betweeness
centrality, etc.) highly correlate with the presence of community
smells. Therefore, these metrics could be used to effectively detect
community smells. We believe that an early detection community
smells can and help developers and project managers keep a healthy
development community and re-organize the community structure.

In this paper, we present csDetector, a tool based on our previ-
ous work [1, 2]. The tool learns from a set of organizational-social
symptoms that characterize the existence of a potential community
smell using machine learning. csDetector first mines the change
history of a software project to calculate various socio-technical
metrics that will serve as features. Then, csDetector takes as input
(1) the learnt community smells detection models, and (2) the list of
mined socio-technical metrics. Then, it generates as output the list
of calculated socio-technical metrics as well as the list of detected
community smells. Currently, csDetector supports the detection
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Table 1: Community Smells Types.

Definition References

Organizational Silo Effect (OSE): This refers to the presence of isolated subgroups, and lack of communication and collaboration between community developers.
As a result, this smell cause an extra unforeseen cost to a project by wasted resources (e.g., time), as well as duplication of code.

[33, 36, 38]

Black-cloud Effect (BCE): This reflects an information overload due to lack of structured communications due to limited knowledge sharing opportunities (e.g.,
collaborations, discussions, daily stand-ups, etc.), as well as a lack of expert members in the project that are able to cover the experience or knowledge gap of a
community.

[36, 38]

Prima-donnas Effect (PDE): This smell appears when a team of people is unwilling to respect external changes from other team members due to inefficiently
structured collaboration within a community.

[33, 36, 38]

Sharing Villainy (SV): This smell is caused by a lack of high-quality information exchange activities (e.g., face-to-face meetings). The main side effect of this
smell limitation is that community members share essential knowledge such as outdated, wrong and unconfirmed information.

[36]

Organizational Skirmish (OS): The OS is caused by a misalignment between different expertise levels and communication channels among development units
or individuals involved in the project. The existence of this smell leads often to dropped productivity and affect the project’s timeline and cost.

[36]

Solution Defiance (SD): The solution defiance smell occurs when the development community presents different levels of cultural and experience background,
and these variances lead to the division of the community into similar subgroups with completely conflicting opinions concerning technical or socio-technical
decisions to be taken. The existence of the SD often leads to unexpected project delays and uncooperative behaviors among the developers.

[36]

Radio Silence (RS): The ratio silence smell occurs when a high formality of regular procedures takes place due to the inefficient structural organization of a
community. The RS community smell typically causes changes to be retarded, as well as a valuable time to be lost due to complex and rigid formal procedures. The
main effect of this smell is an unexpected massive delay in the decision-making process due to the required formal actions needed.

[36]

Truck Factor Smell(TFS):The truck factor smell occurs when most of the project information and knowledge are concentrated in one or few developers. The
presence of this smell eventually leads to a significant knowledge loss due to the turnover of developers.

[3]

Unhealthy Interaction (UI): This smell occurs when discussions between developers are slow, light, brief and/or contains poor conversations. It manifests with
low developers participation in the project discussions (e.g., pull requests, issues, etc.) having long delays between messages communications.

[30, 40]

Toxic Communication (TC): This smell occurs when communications between developers are subject to toxic conversations and negative sentiments containing
unpleasant, anger or even conflicting opinions towards various issues that people discuss. Developers may have negative interpersonal interactions with their
peers, which can lead to frustration and stress. These negative interactions may ultimately result in developers abandoning projects.

[17, 30, 40]

of ten common types community smells (cf. Table 1). csDetector
has been designed to be easy to extend, i.e., developers can easily
calibrate the predefined detection models. Moreover, although cs-
Detector currently detects 10 common community smell types,
it is designed with a high level of flexibility to incorporate new
community smell types easily, and also permits the customization
of the existing smell detection models if needed as shown later in
Section 3, where we discuss the tool’s architecture.

To evaluate the performance of csDetector, we performed an
experimental study on a set of 143 open source projects containing
various types of community smells. The results indicate that csDe-
tector can correctly detect community smells with an average F1
score of 84%.

Open source tool and documentation. csDetector is pub-
licly available as an open source in our tool repository [21] including
the (1) tool source code, along with (2) a demonstration video and
(3) the documentation on how to use it.

2 BACKGROUND AND RELATED WORK

2.1 Community Smells

Community smells are defined as a set of sub-optimal organizational
and social circumstances in the development team of a software
project that influence the production, operation, and evolution of
software [28, 34, 36]. Table 1 provides the definitions of ten common
community smells that csDetector supports in its detection. We
primarily focus on the mentioned smells since they are frequently
encountered in the software industry and have a negative impact
on the social structure of the project and shown to lead to software
quality degradation [1, 3, 15, 20, 28, 28, 33, 36, 36, 40].

2.2 Related Work

Recent works on organizational social aspects in software engineer-
ing have identified various aspects around community smells, and
proposed mechanisms to ease their detection.

Tamburri et al. proposed a tool called YOSHI to automate to
detect organizational structure patterns across open source com-
munities [37]. The proposed tool maps open-source projects onto
community patterns, and introduces measurable attributes to iden-
tify organizational and social structure types and characteristics
through formal detection rules. CodeFace is another tool developed
as a Siemens product [13] and designed to identify developers com-
munities based on building developer networks. Another tool called
Codeface4Smell has been proposed later as an extension of CodeFace
to identify community smells based on community metrics and sta-
tistical values to measure the quality and health characteristics of
software development communities [38]. Codeface4Smell uses the
development history and mailing lists to assess the social network
among developers. Avelino et al. introduced a tool called Truck

Factor [3] to measure information concentration within community
members and support the software development community to deal
with turnover of developers. The proposed approach estimates the
truck factor values of Github projects based on historical informa-
tion about developers contributions and collaborations from the
commit log.

In particular, csDetector builds on top of our previous work
[1, 2] where used various machine learning and rule-based based
detection models to build detection rules for each community smell
type [14, 22–27, 31]. Hence, our goal is build a comprehensive
tool that can detect a variety of smells to help characterizing and
analyze organizational-social structures in software development
communities.

3 ARCHITECTURE

A high-level overview of the architecture of csDetector is de-
picted in Figure 1. csDetector is implemented as an open-source
command line and it has two main modules (1) metrics extrac-
tion module and (2) smells detection module. First, csDetector
starts by retrieving and analysing developers relationships of a
given software development community using different software
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development artefacts mined from the Version Control Systems.
Initially, our tool extracts developers alias (A). Thereafter, these
aliases are used to build social graph of the developers (B), and
calculate sentiments-related metrics (C). Then, the social network
graph is used to to calculate the socio-technical metrics quantifying
the collaboration between the project developers. Finally, in the
smells detection module, the extracted features are used by our
pre-trained models (E) to detect any existing community smells. In
the following subsections, we provide details for each module.

Mine developers 

aliases

Build social networks 

graphs

Compute Socio-

technical Metrics

Compute Sentiments 

Metrics

Features extraction Module

Open source project 
Detected 

Smells

A

B C

D

E

Pre-trained

Detection 

model

Smells Detection 

Module

Figure 1: High-level architecture of csDetector

3.1 Features Extraction Module

Our metrics framework is built based on well-known organizational
social metrics that are related to community smells and heavily
exploited in previous studies [3, 7, 18, 19, 29, 30, 38, 40]. We also
extended the organizational social metrics with a new set of met-
rics to capture more community-related proprieties that can be
mined from the project’s history. Such metrics analyze different
aspects in software development communities including organi-
zational dimensional, social network characteristics, developers
collaborations, truck numbers, and sentiments aspects in develop-
ers communications. We calculate the set of features from a given
project by analyzing its repository through commit information
history and the discussions that are available in a version control
system (e.g., pull request and issues communications, commit mes-
sages, etc.). The following paragraphs elaborate the details of our
tool modules.

A Mine developers aliases: The author alias mining and con-
solidation consists of the following sub-steps [3]: (i) retrieval all
unique dev-emails, where for each git commit has a dev-email asso-
ciated with it, (ii) Retrieval of GitHub logins related to developers,
(iii) similarity matching of emails and logins: by applying Leven-
shtein distance [3], all aliases are compared and, with a certain
degree of threshold value at most one, consolidated, and (iv) re-
placement of author emails by their respective aliases [3]. The final
transformation goes through all the commits once again and re-
placing original authors by their main alias. As a result, if there
is a developer associated with commits with different names, we
consider them as a single developer, and the output will be pre-
sented in a new aliases list. For example, “Bob.Rob" and “Bob Rob"
are different names for a single developer associated to commits.
Thus, we consider them as the same developer in a new aliases list
as a single identical substitution.

B Build a social network graph: Social networks analysis
(SNA) have been used for studying and analyzing the collaboration
and organization of developers who are working in teams within
software development projects [16]. Our developers network model
is based on socio-technical connections during software develop-
ment. We devised different social network analysis metrics to de-
scribe the community structure and quantify various quality factors
in a software project. csDetector builds a developer network from
the version control system by tracking the change logs at three
levels: (1) commits, (2) issues, and (3) pull requests. csDetector
build the developers networks using the networkx Python library1
in the form of graph where the nodes represent developers and
edges are the connections between two developers, when they have
participated in the same issue or in the same pull request discus-
sions. Such social networks allows then to calculate the different
social network metrics including the degree centrality, closeness
centrality, network density, etc.

C Compute SentimentMetrics:We computed sentimentmet-
rics using the state-of-the-art SentiStrength2 tool which allows
estimating the degree of positive and negative sentiments in short
texts, even for informal language. SentiStrength assigns fixed scores
for sentiment two polarizations:

• Negative: -1 (slightly negative) to -5 (extremely negative).
• Positive: 1 (slightly positive) to 5 (extremely positive).

SentiStrength is a lexical sentiment extraction tool based on a
list of words. We used SentiStrenght to measure the sentiment of
developers in commit comments, issue comments, and pull request
comments (which often are short). Moreover, we used the Perspec-
tive API3 to identify whether a comment is perceived as “toxic” in a
given communication context.We also applied Stanford’s politeness
detector [8] to analyse politeness sentiments in the developers com-
munications. For space limitations, we provide the list of sentiment
metrics and their definitions in our tool website [21].

D Compute Socio-technical Metrics: In this step, we use
the collected artifacts and social network graph built in previous
steps to compute a variety of socio-technical metrics [21]. These
metrics analyze different aspects in software development commu-
nities including developer contributions, social network analysis,
community metrics, geographic dispersion, formality metrics, truck
numbers, communication metrics, and sentiment analysis metrics.
All metrics are available online for future extension and replication
on our tool website [21].

3.2 Smells Detection Module

Once the necessary socio-technical metrics are collected, the smells
detection module uses pre-defined models to detect community
smells for a given project’s link in Github.

E Pre-trained Model: We built decision tree-based models
that were trained from real world instances of community smells
in our prior work [2]. In particular, for each community smell type,
a pre-trained model is used by csDetector to check if a given
project is affected by that smell based on its collected features (i.e.,
by the Features Extraction Module). The different models are loaded

1https://networkx.org/
2http://sentistrength.wlv.ac.uk/
3https://www.perspectiveapi.com

https://networkx.org/
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in a specific folder in our tool repository [21], namely, Models.
This makes our tool flexible and extensible in such a way that
the models can be updated or customized from the developers or
new community smells can be considered by simply adding their
corresponding pre-trained models in the models folder.

4 CSDETECTOR USAGE SCENARIO

csDetector takes as input the target project, i.e., repository url in
Github, then it automatically extracts the socio-technical metrics.
Next, the extracted metrics are provided to the pre-trained model
to detect existing smells. The detection strategy of each smell type
is self-contained within its own pre-trained detection model. Fi-
nally, for each smell that is detected by its corresponding model,
csDetector shows its name to the user through the command
line interface, e.g., detected smells with the last commit data of the
target project.

csDetector Usage. As a command line tool, csDetector can
be executed as executable file under windows by command line
devNetwork.exe with the specific parameters. All necessary infor-
mation to run our tool are provided in the csDetector website [1].
The command line is as follows:

devNetwork.exe <parameters>

where the different parameters are used in the following order:
-p <GitHub PAT (personal access token) used for querying the GitHub API>

-g <Google Cloud API Key used for authentication with Perspective API>

-r <GitHub repository URL to be analyzed>

-s <local directory path to the SentiStregth tool>
-o <Local directory path for analysis output>

-sd <The desired date to start analyzing a project YYYY-MM-DD>

After the detection process is complete, the detected smells will
show up on the command line interface, and CSV files containing
all the metrics values will be created on the local directory path for
analysis output, as well as the social network graphs.

5 EVALUATION

The performance of the csDetector tool strongly depends on
the detection approach it implements. As explained above, the
introduced tool is based on our recent work [2]. In particular, we
conduct an evaluation of csDetector on a dataset that consists of
143 GitHub large projects selected based on their community size,
number of commits, and availability of their pull request and issue
tracking systems in Github [21].

csDetector has successfully computed a variety of 52 socio-
technical metrics including social network metrics, sentiments met-
rics, and communication metrics. We retrained the models in our
experimental data as the final detection results depend on the per-
formance of these pre-trained models. To generate the models, we
used out-of-sample bootstrapping validation process repeated 100
times since it was showed to be stable for similar software engineer-
ing problems [39]. This process starts by randomly sampling with
replacement 𝑁 elements from the data set (in our case 𝑁 = 143)
and use it as a training set and we use the elements that does not
occur in the training set to test the tool. Since the sampling process
is done with replacement, on average 32.6% of elements would not
figure in the training set. This process is repeated 100 times and we
use the average of the obtained results to asses the performance
of the tool. Note that, the models do not need to be trained for

Table 2: The results for each smell type.

Smell Type Accuracy Precision Recall F1 AUC
OSE 0.91 0.91 0.87 0.89 0.96
BCE 0.87 0.88 0.82 0.84 0.94
OS 0.84 0.85 0.81 0.83 0.91
PDE 0.80 0.83 0.73 0.77 0.89
RS 0.90 0.91 0.86 0.89 0.96
SD 0.84 0.86 0.81 0.83 0.92
SV 0.83 0.85 0.81 0.82 0.91
TF 0.82 0.83 0.71 0.76 0.90
UI 0.89 0.90 0.88 0.89 0.94
TC 0.89 0.87 0.90 0.88 0.94
Average 0.86 0.87 0.82 0.84 0.93

each dataset as we provide the default pre-trained models in our
csDetector repository.

To measure the performance of our tool, we used different clas-
sification metrics namely, accuracy, precision, recall, 𝐹1, and AUC
[5]. Table 2 reports of our results for the ten considered community
smell types (cf. Table 1) in terms of accuracy, precision, recall, F1,
and AUC. The table presents the detection results for each smell
type. As shown in the table, our tool achieves a high level of cor-
rectness with AUC ranging from 0.89 to 0.96 and average of 0.93.
Moreover, we observe csDetector does not have a bias towards
the detection of any specific smell type. As shown in the figure,
csDetector achieved good performance and low variability in
terms of the performance metrics. For instance, the accuracy is
ranging from 0.80 to 0,91 and F1 is ranging from 0.77 to 0.89 across
the 10 considered smell types. The highest F1 was obtained for
the organisational silo effect (OSE) with 0.89 which heavily relies
rely on the notion of developers social network and sub-groups.
This higher performance is reasonable since the existing guidelines
[28, 35–38] rely heavily on the notion of social network. But for
smells such as the Prima-donnas Effect (PDE), the notion of social
network is less important and this makes this type of smells harder
to detect using such information.

6 CONCLUSION & FUTUREWORK

In this paper, we introduced csDetector, a tool to automatically
detect community smells in a given software project, to help de-
velopers detecting and understanding social debt in their software
projects. The csDetector tool is based on pre-trained commu-
nity smells detectors using historical projects data (social network
and communications among developers, developers contributions,
sentiments analysis, etc.). We also described the architecture of
csDetector, the ease of integrating new smell types into the tool.
To evaluate our tool, we conducted a set of experiments on the per-
formance of csDetector. The results show that our tool achieves
a high performance in terms of F1 with an average of 84% on all the
considered community smells types from 143 open source projects.

As future work, we plan to enhance the visualization part of our
tool with a comprehensive dashboard that help developers track
the evolution of the health of their development community and
consider other aspects of social debt.
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