
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/307090396

Recommending relevant classes for bug reports using multi-objective search

Conference Paper · August 2016

DOI: 10.1145/2970276.2970344

CITATIONS

27
READS

258

4 authors, including:

Some of the authors of this publication are also working on these related projects:

Machine Learning for Software Engineering View project

Bug Management View project

Mohamed Wiem Mkaouer

Rochester Institute of Technology

138 PUBLICATIONS   1,332 CITATIONS   

SEE PROFILE

Ali Ouni

Osaka University

136 PUBLICATIONS   2,555 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Mohamed Wiem Mkaouer on 25 October 2019.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/307090396_Recommending_relevant_classes_for_bug_reports_using_multi-objective_search?enrichId=rgreq-db729a48124ca05eaecf3e83aaa73bfb-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo4MTc4ODgxMDU1OTQ4ODBAMTU3MjAxMTEyODE0OQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/307090396_Recommending_relevant_classes_for_bug_reports_using_multi-objective_search?enrichId=rgreq-db729a48124ca05eaecf3e83aaa73bfb-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo4MTc4ODgxMDU1OTQ4ODBAMTU3MjAxMTEyODE0OQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Machine-Learning-for-Software-Engineering-2?enrichId=rgreq-db729a48124ca05eaecf3e83aaa73bfb-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo4MTc4ODgxMDU1OTQ4ODBAMTU3MjAxMTEyODE0OQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Bug-Management?enrichId=rgreq-db729a48124ca05eaecf3e83aaa73bfb-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo4MTc4ODgxMDU1OTQ4ODBAMTU3MjAxMTEyODE0OQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-db729a48124ca05eaecf3e83aaa73bfb-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo4MTc4ODgxMDU1OTQ4ODBAMTU3MjAxMTEyODE0OQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohamed-Wiem-Mkaouer-2?enrichId=rgreq-db729a48124ca05eaecf3e83aaa73bfb-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo4MTc4ODgxMDU1OTQ4ODBAMTU3MjAxMTEyODE0OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohamed-Wiem-Mkaouer-2?enrichId=rgreq-db729a48124ca05eaecf3e83aaa73bfb-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo4MTc4ODgxMDU1OTQ4ODBAMTU3MjAxMTEyODE0OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Rochester-Institute-of-Technology?enrichId=rgreq-db729a48124ca05eaecf3e83aaa73bfb-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo4MTc4ODgxMDU1OTQ4ODBAMTU3MjAxMTEyODE0OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohamed-Wiem-Mkaouer-2?enrichId=rgreq-db729a48124ca05eaecf3e83aaa73bfb-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo4MTc4ODgxMDU1OTQ4ODBAMTU3MjAxMTEyODE0OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ali-Ouni?enrichId=rgreq-db729a48124ca05eaecf3e83aaa73bfb-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo4MTc4ODgxMDU1OTQ4ODBAMTU3MjAxMTEyODE0OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ali-Ouni?enrichId=rgreq-db729a48124ca05eaecf3e83aaa73bfb-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo4MTc4ODgxMDU1OTQ4ODBAMTU3MjAxMTEyODE0OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Osaka_University?enrichId=rgreq-db729a48124ca05eaecf3e83aaa73bfb-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo4MTc4ODgxMDU1OTQ4ODBAMTU3MjAxMTEyODE0OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ali-Ouni?enrichId=rgreq-db729a48124ca05eaecf3e83aaa73bfb-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo4MTc4ODgxMDU1OTQ4ODBAMTU3MjAxMTEyODE0OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohamed-Wiem-Mkaouer-2?enrichId=rgreq-db729a48124ca05eaecf3e83aaa73bfb-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo4MTc4ODgxMDU1OTQ4ODBAMTU3MjAxMTEyODE0OQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Recommending Relevant Classes for Bug Reports Using         
Multi-Objective Search 

 

 

 

  

ABSTRACT 
Developers may follow a tedious process to find the cause of a 
bug based on code reviews and reproducing the abnormal 
behavior. In this paper, we propose an automated approach to 
finding and ranking potential classes with the respect to the 
probability of containing a bug based on a bug report description. 
Our approach finds a good balance between minimizing the 
number of recommended classes and maximizing the relevance 
of the proposed solution using a multi-objective optimization 
algorithm. The relevance of the recommended classes (solution) 
is estimated based on the use of the history of changes and bug-
fixing, and the lexical similarity between the bug report 
description and the API documentation. We evaluated our system 
on 6 open source Java projects, using the version of the project 
before fixing the bug of many bug reports. The experimental 
results show that the search-based approach significantly 
outperforms three state-of-the-art methods in recommending 
relevant files for bug reports. In particular, our multi-objective 
approach is able to successfully locate the true buggy methods 
within the top 10 recommendations for over 87% of the bug 
reports. 

CCS Concepts 

• Software and its engineering →  Software notations and 
tools →  Software maintenance tools 

Keywords 
Search-based software engineering; bug reports; multi-objective 
optimization; software maintenance. 

1. INTRODUCTION 
 

A software bug is a coding error that may cause abnormal 
behaviors and incorrect results when executing the system [1]. 
After identifying an unexpected behavior of the software project, 
a user or developer will report it in a document, called a bug report 
[2]. Thus, a bug report should provide useful information to 
identify and fix the bug. The number of these bug reports can be 
large. For example, MOZILLA had received more than 420,000 
bug reports [3]. These reports are important for managers and 
developers during their daily development and maintenance 
activities [4]. 

A developer always uses a bug report to reproduce the 
abnormal behavior to find the origin of the bug. However, the 
poor quality of bug reports can make this process tedious and 
time-consuming due to missing information. To find the cause of 
a bug, developers are not only using their domain knowledge to 
investigate the bug report, but interact with peer developers to 
collect additional information. An efficient automated approach 
for locating and ranking important code fragments for a specific 
bug report may lead to improving the productivity of developers 
by reducing the time to find the cause of a bug [4]. Most of the 

existing studies are mainly based on lexical matching scores 
between the statements of bug reports and the name of code 
elements in software systems [5]. However, there is a significant 
difference between the natural language used in bug reports and 
the programming language which limits the efficiency of existing 
approaches. 

In this work, we start from the following observations. First, 
API documentation of the classes and methods can be more useful 
than the name of code elements or comments to estimate the 
similarity between code fragments and bug reports. Second, 
classes associated to previously fixed bug reports may be relevant 
also to the current report if these previously bug reports are 
similar to a current bug report. Third, a code fragment that was 
fixed recently is more likely to still contain bugs than another 
class that was last fixed long time ago. Fourth, a class that has 
been frequently fixed, tend to be fault-prone and may cause more 
than one abnormal behavior in the future. Finally, the 
recommendation of a large number of classes to inspect may 
make the process of finding the cause of a bug time-consuming.  

To consider the above observations, we propose a 
comprehensive approach for bugs localization based on bug 
reports description. To this end, we propose, for the first time, to 
use a multi-objective optimization algorithm [6] to find a balance 
between maximizing lexical and history-based similarity, and 
minimizing the number of recommended classes. The problem is 
formulated as a search for the best combination and sequence of 
classes from all the classes of the system that optimize as much 
as possible the above two conflicting objectives.  

We have executed an extensive empirical evaluation of 6 
large open-source software projects with more than 22,000 bug 
reports in total based on an existing benchmark [7]. The results 
on the before-fix versions show that our system outperforms, on 
average, three state-of-the-art approaches not based on search 
techniques [7] [8] [9]. In particular, our search-based approach is 
able to successfully locate the true buggy methods within the top 
10 recommendations for over 87% of the bug reports.  

The primary contributions of this paper can be summarized 
as follows: 

 To the best of our knowledge and based on recent surveys 
[10], the paper proposes the first search-based software 
engineering approach to address the problem of finding 
relevant code fragments for bug reports. The approach 
combines the use of lexical and history based similarity 
measures to locate and rank relevant code fragments for bug 
reports while minimizing the number of recommended 
classes. 

 The paper reports the results of an empirical study with an 
implementation of our multi-objective approach. The 
obtained results provide evidence to support the claim that 
our proposal is more efficient, on average, than existing 



techniques [7] [8] [9] based on a benchmark of 6 open source 
systems. We also compared the results of our multi-objective 
approach with a mono-objective formulation to make sure 
that our objectives are conflicting. 

The remainder of this paper is as follows: Section 2 describes the 
search algorithm; an evaluation of the algorithm is explained and 
its results are discussed in Section 3; the different threats that 
affect our experimentations are described in Section 4; Section 5 
is dedicated to related work. Section 6 describes the threats to 
validity related to our experiments. Finally, concluding remarks 
and future work are provided in Section 7. 

2. RELATED WORK 
 

In this section, we survey different studies related to the areas of 
bug localization and search-based software engineering. 

2.1 Bug Localization 
 

The problem of bug localization can be considered as searching 
the source of a bug given its description. To address this problem, 
the majority of existing studies is based on the use Information-
Retrieval (IR) techniques through the detection of textual and 
semantic similarities between a newly given report and source 
code entities [5]. Several IR techniques have been investigated, 
namely the Latent Semantic Indexing (LSI) [11], Latent Dirichlet 
Allocation (LDA) [12] and the Vector Space Model (VSM) [13]. 
In addition, hybrid models extracted from these IRs techniques to 
tackle the problem of bug localization were proposed[7]. 

We summarize, in the following, the different tools and 
approaches proposed in the literature based on the above IR 
techniques. BugScout [8] is a topic-based approach using LDA to 
analyze the bug related information (description, comments, 
external links, etc.) to detect the source of a bug and duplicated 
bug reports. The main limitation of BugScout is the dependency 
of the results on the keywords entered by the user. 
DebugAdvisor’s [14] is a bug investigation system that takes as 
input a bug report in terms of text queries then uses them to mine 
existing fixed bug repository and generate a graph of possible 
reports. However, DebugAdvisor accuracy depends on the 
accuracy of the report’s description and its accuracy when 
describing the bug and its related code entities. 

BugLocator [9] combines several similarity scores from 
previous bug reports for bug localization. It generates a VSM 
model to extract suspect source files for a given bug report. Then, 
BugLocator mines previously fixed bug reports along with related 
files involved to rank suspect code fragments. The main issue 
raised in this work is the proneness of the weight density to the 
noise in the large files. To overcome this limitation, [15] added 
segmentation and stack-trace analysis to improve the 
performance of the BugLocator approach. The limitation of this 
extension is that execution traces are not necessarily available in 
bug repositories. 

BLUiR [16] has been proposed also to compare a bug report 
to the structure of source files. It decomposes reports into 
summaries and then uses the structural retrieval to calculate 
similarities between these tokenized elements and source code 
ones to rank source code files. Saha et al. [17] extended BLUiR 
to consider similar reports information, similarly to BugLocator 
as an additional similarity score. DHbPd [18] incorporated code 
change information for bug localization. The main idea is to 

consider recently changed source code elements as potential 
candidates for hosting a bug. 

Ye et al. [7] has modeled the similarity between bug reports 
and source code through several characteristics that are captured 
through the use of 6 similarity features that describe the project’s 
domain knowledge. The combination of these measures is fed to 
a ranking heuristic called learning-to-rank. The ranking model 
returns the top candidate source files to investigate for a given 
bug report. The main originality of their work is the use of 
projects API description and auto-generated documentation as 
one of the features to utilize to reduce the lexical gap between the 
human description and the source code.  

In [19] Ye et al. extended their previous work by extending 
their ranking features utilized by learning-to-rank from 6 to 19. 
Besides the existing surface lexical similarity, API-based lexical 
similarity, collaborative filtering, code element’s naming 
similarity, fixed bug’s frequency, they included other source code 
characteristics that can be extracted from the projects such as 
summaries, naming conventions, inter-class dependencies etc. 
Although taking these features into account has given better 
results in terms of better files’ ranking, such information may not 
be available in all projects and sometimes it may be outdated and 
that may deteriorate the localization’s accuracy. 

We propose, in this paper, a more comprehensive approach 
to address the problem of bug’s localization from different 
perspectives as detailed in the next sections. 

2.2 Search-Based Software Engineering 
 

Search-Based Software Engineering (SBSE) uses a 
computational search approach to solve optimization problems in 
software engineering [20]. Once a software engineering task is 
framed as a search problem, by defining it in terms of solution 
representation, fitness function, and solution change operators, 
there is a multitude of search algorithms that can be applied to 
solve that problem. 

Many search-based software testing techniques have been 
proposed for test cases generation [21], mutation testing [22], 
regression testing [23] and testability transformation. However, 
the problem of bug’s localization was not addressed before using 
SBSE. The closest problem addressed using SBSE techniques is 
the bug’s prioritization problem [24]. A mono- objective genetic 
algorithm was proposed to find the best sequence of bugs’ 
resolution that maximizes the relevance and importance of the 
bugs to fix while minimizing the cost. The main limitation of this 
work is the use of a mono-objective technique that aggregates two 
conflicting objectives.  

In the next section, we describe our formulation of bug 
localization as a multi-objective problem. 

3. MULTI-OBJECTIVE FORMULATION 
 

We first present an overview of our multi-objective approach to 
identify and prioritize relevant code fragments (e.g. classes) for 
bug reports, and then we describe the details of our multi-
objective formulation. 

3.1 Approach Overview 
 



Our approach aims at exploring a large search space to find 
relevant classes, to inspect by developers, given a description of 
a bug report. The search space is determined not only by the 
number of possible class combinations to recommend, but also by 
the order in which they are proposed to the programmer. In fact, 
bug reports may require the inspection of more than one class to 
identify and fix bugs. 

A heuristic-based optimization method is proposed based on 
two main conflicting objectives. The first objective is the 
correctness function that includes two sub-functions: 1.a) 
maximizing the Lexical similarity between recommended classes 
and the description of the bug report (including the API and name 
of code elements similarity), and 1.b) maximizing the history-
based function score that includes the number of a recommended 
classes that have been fixed in the past, recent changes introduced 
by the developers to these classes and similarities with previous 
bug reports. The second objective is to minimize the number of 
classes to recommend. 

It is clear that these two objectives are conflicting since 
maximizing the relevance of recommended classes may leads to 
a lower precision and thus increases the number of recommended 
classes.  Thus, we consider, in this paper, the task of localizing 
bugs as a multi-objective optimization problem using the non-
dominated sorting genetic algorithm (NSGA-II) [6]. The 
proposed algorithm will explore a large search space of a 
combinatorial number of combinations of classes to recommend. 

 

 

Figure 1. Approach Overview 

The general structure of our approach is sketched in Figure 
1. It takes as input the source code of the program to be inspected, 
the API specifications of the classes of the system, the description 
of the bug report and a list of previous bug reports and the history 
of the applied changes in previous releases. Our approach 
generates as output a near-optimal sequence of ranked classes that 
maximizes the relevance to the bug report and minimizes the 
number of recommended classes. In the following, we describe 
an overview of NSGA-II, the solution representation, a formal 
formulation of the two objectives to optimize and the change 
operators. 

3.2 NSGA-II 
 

In this paper, we adapted one of the widely used multi-objective 
algorithms called NSGA-II [6]. NSGA-II is a powerful search 
method stimulated by natural selection that is inspired by the 
theory of Darwin. Hence, the basic idea of NSGA-II is to make a 
population of candidate solutions evolve toward the near-optimal 
solution in order to solve a multi-objective optimization problem. 
NSGA-II is designed to find a set of optimal solutions, called non-
dominated solutions, also Pareto set. A non-dominated solution is 
the one which provides a suitable compromise between all 
objectives without degrading any of them. As described in Figure 
2, the first step in NSGA-II is to create randomly a population P0 
of individuals encoded using a specific representation (line 1). 

Then, a child population Q0 is generated from the population of 
parents P0 using genetic operators such as crossover and mutation 
(line 2). Both populations are merged into an initial population R0 
of size N (line 5). As a consequence, NSGA-II starts by generating 
an initial population based on a specific representation that will 
be discussed later, using the exhaustive list of classes from the 
system to inspect given as input as mentioned in the previous 
section. Thus, this population stands of a set solutions represented 
as sequences of classes to inspect, which are randomly selected 
and ordered, for a specific bug report description taken as input. 

The whole population that contains N individuals (solutions) 
is sorted using the dominance principle into several fronts (line 
6). The dominance level becomes the basis of a selection of 
individual solutions for the next generation. Fronts are added 
successively until the parent population Pt+1 is filled with N 
solutions (line 8). When NSGA-II has to cut off a front Fi and 
select a subset of individual solutions with the same dominance 
level, it relies on the crowding distance to make the selection (line 
9). This front Fi to be split, is sorted in descending order (line 13), 
and the first (N-|Pt+1|) elements of Fi are chosen (line 14). Then a 
new population Qt+1 is created using selection, crossover and 
mutation (line 15). This process will be repeated until reaching 
the last iteration according to stop criteria (line 4).  

 

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.

 

Create an initial population P0 

Generate an offspring population Q0 

t=0; 

while stopping criteria not reached do 
     Rt = Pt ∪ Qt; 
     F = fast-non-dominated-sort (Rt); 
     Pt+1 = ∅ and i=1;  
     while | Pt+1| +|Fi| ≤ N do 
          Apply crowding-distance-assignment(Fi);  
          Pt+1 = Pt+1 ∪ Fi ; 
          i = i+1; 
     end 
     Sort(Fi, ≺ n); 
     Pt+1 = Pt+1  ∪ Fi[1 : (N-| Pt+1 |)]; 
     Qt+1 = create-new-pop(Pt+1); 
     t = t+1; 
end 

Figure 2. NSGA-II Pseudo-Algorithm 

 

The following three subsections describe more precisely our 
adaption of NSGA-II to the model change detection problem. 

3.3 Solution Approach 
 

3.3.1 Solution representation 
To represent a candidate solution (individual), we used a vector 
representation. Each dimension of the vector represents a class to 
recommend for a specific bug report. Thus, a solution is defined 
as a sequence of classes to recommend for inspection by the 
developer to locate the bug.  

When created, the order of recommended classes 
corresponds to their positions in the vector. The classes to 
recommend are dependent since a bug can be located in different 
classes. In addition, the goal is to recommend a minimum set of 
classes while maximizing the correctness objective.  

 



 

Figure 3. Simplified Example of a Solution Representation. 

 

 

Figure 4. An Eclipse Bug Report Example1 (ID 378535) 

 

Figure 3 describes a simplified solution generated to find 
possible relevant classes for the bug report of Figure 4 that shows 
an example of a bug report from the Eclipse project (ID 378535). 
This bug report describes a defect about incorrect menu options 
for parts that are not closeable. The solution consists of a 
sequence of three classes to inspect extracted from the Eclipse 
project. 

3.3.2 Fitness functions 
Correctness objective: This objective is defined as the average of 
two functions: lexical-based similarity (LS) and history-based 
similarity (HS). Thus, we formally define this function as: 

2
1

HSLS
f


  (1) 

 

The lexical-based similarity (LS) consists of an average of 
two functions. The first function is based on a cosine similarity 
[25] between the description of a bug report and the source code. 
We used the whole content of a source code file (the code and 
comments). The vocabulary was extracted from the names of 
variables, classes, methods, parameters, types, etc. We used the 
Camel Case Splitter to perform the Tokenization for 
preprocessing the identifiers [26].  

During the tokenization process, we used a standard 
information retrieval stop words to eliminate irrelevant 
information such as punctuation, numbers, etc. In addition, the 
words are reduced to their stem based on a Porter stemmer. This 
operation reduces the deviation between related words such as 
designing and designer to the same stem design. Then, the cosine 
similarity measure is used to compare between the description of 
a bug report and the source code.  

                                                                 
1 https://bugs.eclipse.org/bugs/show bug.cgi?id=378535 

Equation 2 calculates the cosine similarity between two 
actors. Each actor is represented as an n dimensional vector, 
where each dimension corresponds to a vocabulary term. The 
cosine of the angle between two vectors is considered as an 
indicator of similarity. Using cosine similarity, the conceptual 
similarity between two actors: c1 and c2 is determined as follows: 



















n

i

i

n

i

i

n

i

ii

ww

ww

CC

CC
CCCosCCSim

1

2,
2

1

1,
2

1

2,1,

21

21
2,1

)()(

)(

)2,1()( 



 

(2) 

where );....( 1,1,11 nwwc   is the term vector 

corresponding to actor c1 and );....( 2,2,12 nwwc   is the term 

vector corresponding to c2. The weights wi,j is computed using 
information retrieval based techniques such as the Term 
Frequency - Inverse Term Frequency (TF-IDF) method[27]. The 
first lexical similarity function is then defined as the sum of the 
of the cosine similarity scores between a description of a bug 
report and the source code of each the suggested classes divided 
by the total number of recommended classes. 

As described in Figure 4 and Figure 5, the description of the 
bug report example includes several similar words with one of the 
recommended classes to inspect, the class StackRenderer. Thus, 
the cosine similarity function applied between the source code of 
that class and the description of the bug report will detect such 
similarities. However, the only use of this similarity function may 
not be enough.  

In fact, the text of a bug report is, in general, expressed in a 
natural language however the large part of the content of a source 
code is described in a programming language. Thus, the similarity 
score between a bug report description and a source code will be 
higher in case of an extensive use of comments in the code or if 
the bug report clearly uses the names of code elements. To 
address this challenge, we propose to use an additional lexical 
similarity function. 

The second lexical function is based on the use of cosine 
similarity between the bug report description and the API 
specification of each method of a recommended buggy class. 
Thus, it is defined as the sum of the maximum of the cosine 
similarity scores between a description of a bug report and each 
of the methods composing the suggested class divided by the total 
number of recommended classes.  

As described in Figure 5, the class StackRenderer includes a 
variable uiElement having as a type MUIElement. Figure 6 shows 
the API specification of the MUIElement interface that includes 
different terms such as parts and menus that also exists in the bug 
report description of Figure 4. Thus, the lexical similarity 
between the API specification and the description of a bug report 
may also help to better identify relevant buggy classes. 



 

Figure 5: A code fragment extracted from the class 
StackRenderer. 

 

 

Figure 6: API Specification of the interface MUIElement. 

The second component of the correctness objective is the 
history-based similarity. This measure is an average of three 
functions. The first function counts the number of times that a 
class was fixed to eliminate bugs based on the history of bug 
reports. In fact, a class that was fixed several times has a high 
probability of being a buggy class and includes new bugs. 
Formally, this function, normalized between [0,1] is defined as: 

)),(()(

),(
)(

1
1

i

SSize

i

i

creportsNbFixedBugMaxSSize

creportsNbFixedBug
H





  (3) 

The second function checks if a recommended class was 
recently changed or fixed. In fact, a class that was modified 
recently has a higher probability of containing a bug. Thus, the 
function compares between the date of the bug report and the last 
date where the recommended class was modified. If a suggested 
class was modified on the same day of the bug report then the 
value of this function is 1. We define this normalized function, 
normalized in the range of [0, 1] as following: 

)(
1),(.

1)(

1
2

SSize
creportlastdatereport

H

SSize

i i

   

(4) 

The third function evaluates the consistency between the 
recommended classes based on previous bug reports. The classes 
that are recommended together for similar previous bug reports 
have a high probability to include a bug evolving most of them. 
To this end, this function calculates first the cardinality, Cbr, of 
the largest intersection set of classes between the solution S and 
the sets of classes recommended for each of previous bug reports. 
Then, this measure is normalized as follows: 

)(
3

SSize

Cbr
H   (5) 

3.3.3 Change operators 
In a search algorithm, the variation operators play the key 

role of moving within the search space with the aim of driving the 
search towards better solutions. We used the principle of the 
Roulette wheel [28] to select individuals for mutation and 
crossover. The probability to select an individual for crossover 
and mutation is directly proportional to its relative fitness in the 
population. In each iteration, we select half of the population in 
iteration i. These selected individuals will give birth to another 
half of the population of new individuals in iteration i+1 using a 
crossover operator. Therefore, two parent individuals are 
selected, and a few dimensions (recommended classes) picked on 
each one. The one point crossover operator allows creating two 
offspring P’1 and P’2 from the two selected parents P1 and P2. It is 
defined as follows: a random position, k, is selected. The first k 
classes of P1 become the first k elements of P’1. Similarly, the first 
k operations of P2 become the first k operations of P’2. Our 
crossover operator could create a child that contains redundant 
recommended classes. In order to resolve this problem, for each 
obtained child, we verify whether there are redundant classes or 
not. In case of redundancy, we replace the redundant classes by 
randomly chosen ones from the system without causing another 
redundancy.  

The mutation operator can be applied to pairs of dimensions 
of the vector selected randomly. Given a selected solution, the 
mutation operator first randomly selects one or many pairs of 
dimensions of the vector. Then, for each selected pair, the 
dimensions, which correspond to classes, are deleted or replaced 
by new classes. We used the same repair operator, described 
previously, to eliminate redundancy. 

4. EVALUATION 
 

In order to evaluate our approach for recommending relevant 
classes to inspect for bug reports, we conducted a set of 
experiments based on different versions of 6 open source systems. 
Each experiment is repeated 30 times, and the obtained results are 
subsequently statistically analyzed with the aim to compare our 
NSGA-II proposal with a variety of existing approaches not based 
on heuristic search [7, 8, 9] and a mono-objective formulation. In 
this section, we present our research questions and then describe 
and discuss the obtained results. 

4.1 Research Questions 
 

In our study, we assess the performance of our approach by 
finding out whether it could identify the most relevant classes to 
inspect for bug reports. Our study aims at addressing the 
following research questions outlined below. We also explain 
how our experiments are designed to address these questions. The 
main question to answer is to what extent the proposed approach 
can propose meaningful bug localization solutions based on the 
description of a bug report. To this end, we defined the following 
research questions: 

 RQ1. (Efficiency) To what extent can the proposed 
approach identify relevant classes to localize bugs based on 
bug reports description?  



 RQ2. (Comparison to search techniques) How does the 
proposed multi-objective approach based on NSGA-II 
perform compared to random search and a mono-objective 
approach?  

 RQ3. (Comparison to state-of-the-art) How does our 
approach perform compared to existing bugs localization 
techniques not based on heuristic search? 

To answer RQ1, we validate the proposed multi-objective 
technique on six medium to large-size open-source systems, as 
detailed in the next section, to evaluate the correctness of the 
recommended classes to inspect for a bug report. To this end, we 
used the following evaluation metrics: 

• Precision@k denotes the number of correct recommended 
files in the top k of recommended files by the solution divided 
by the minimum number of files to inspect, in the ranked 
recommendations list, to localize the bug. 

• Recall@k denotes the number of correct recommended files in 
the top k of recommended files by the solution divided by the 
total number of expected files to be recommended that contain 
the bug. 

• Accuracy@k measures the percentage of bug reports for 
which at least one correct recommendation was provided in the 
top k ranked classes. 

To answer RQ2, we compared, using the above metrics, the 
performance of NSGA-II with random search and a mono- 
objective genetic algorithm aggregating all the objectives into one 
objective with equal weight. If Random Search outperforms a 
guided search method thus, we can conclude that our problem 
formulation is not adequate. It is important also to determine if 
our objectives are conflicting and outperforms a mono-objective 
technique. The comparison between a multi-objective technique 
with a mono-objective one is not straightforward. The first one 
returns a set of non-dominated solutions while the second one 
returns a single optimal solution. To this end, for we choose the 
nearest solution to the Knee point [29] (i.e., the vector composed 
of the best objective values among the population members) as a 
candidate solution to be compared with the single solution 
returned by the mono-objective algorithm. To answer RQ3, we 
compared our multi-objective approach to different existing 
techniques not based on heuristic search: 1. BugScout [8] 
identifies relevant classes based on the use of Latent Dirichlet 
Allocation measure [12]; 2. BugLocator [9] ranks classes using 
both textual and structural similarity.3. Learning-to-rank (LR) [7] 
technique ranks classes using a machine learning technique to 
learn from the history of previous bug reports. In addition, we 
compared our work with two additional baselines. The first one is 
based on the only use of the lexical measure (LS) to rank classes 
and the second one is based on the only use of the history measure 
(HS). These two baselines may justify or not the need of 
considering complementary information from both the lexical and 
history similarities in our multi-objective formulation. 

In the next section, we describe the different projects and the 
10-fold cross-validation used in our experiments. 

4.2 Software Projects and Experimental 
Setting 
 

As described in Table 1, we used a benchmark datasets for 
six open-source systems [7]. 

• Eclipse UI is the user interface of the Eclipse development 
framework. 

• Tomcat implements several Java EE specifications. 

• AspectJ is an aspect-oriented programming (AOP) extension 
created for the Java programming language. 

• Birt provides reporting and business intelligence capabilities. 

• SWT is a graphical widget toolkit. 

• JDT provides a set of tool plug-ins for Eclipse. 

Table 1 shows the different statistics of the analyzed systems 
including the time range of the bug reports, the number of bug 
reports, the size, the number of APIs, and the number of fixed 
classes per bug report.  

The total number of collected bug reports and associated 
classes is more than 22,000 bug reports for the six open source 
systems. All these projects are using BugZilla tracking system 
and GIT as a version control system. To avoid using a fixed code 
revision, we associated a before-fixed version of the system to 
each bug report. Therefore, for each bug report, the version of the 
software package just before the fix was committed was used in 
our validation. 

Based on the collected data, we created two sets: one for the 
training data and the other for the test data. The bug reports for 
each system were sorted chronologically based on the time 
dimension. The sorted bug reports are then split into 10 folds with 
equal sizes, where fold1 contains the most recent bug reports and 
the last fold fold10 contains the oldest ones. In addition, the oldest 
fold is split into 70% training (history of bug reports) and 30% 
validation. The approach is trained on foldi+1 and tested on foldi, 
for all i from 1 to 9. The best recommended solution is then 
compared with expected solution of classes that contain the bug. 

4.3 Parameters Tuning and statistical tests 

Since metaheuristic algorithms are stochastic optimizers, 
they can provide different results for the same problem instance 
from one run to another. For this reason, our experimental study 
is performed based on 30 independent simulation runs for each 
problem instance and the obtained results are statistically 
analyzed by using the Friedman test with a 95% confidence level 
(α = 5%). The Friedman test is a non-parametric statistical test 
useful for multiple pairwise comparisons. The latter verifies the 
null hypothesis H0 that the obtained results of the different 
algorithms are samples from continuous distributions with equal 
medians, as against the alternative that they are not, H1. The p-
value of the Friedman test corresponds to the probability of 
rejecting the null hypothesis H0 while it is true (type I error). A p-
value that is less than or equal to α (≤ 0.05) means that we accept 
H1 and we reject H0. However, a p-value that is strictly greater 
than α (> 0.05) means the opposite. In this way, we could decide 
whether the superior performance of NSGA-II to one of each of 
the other algorithms (or the opposite) is statistically significant or 
just a random result.  



Table 1. Studied Projects 

Project # Bug reports Time # API # files in the project 
(average per version) 

# fixed files/classes per bug report 
(median) 

Eclipse UI 6495 10/2001-01/2014 1314 3454 2 
Birt 4178 06/2005-12/2013 957 6841 1 
JDT 6274 10/2001-01/2014 1329 8184 2 
AspectJ 593 03/2002-01/2014 54 4439 2 
Tomcat 1056 07/2002-01/2014 389 1552 1 
SWT 4151 02/2002-01/2014 161 2056 3 

The Friedman test allows verifying whether the results are 
statistically different or not. However, it does not give any idea 
about the difference in magnitude. To this end, we used the 
Vargha and Delaney’s A statistics which is a non-parametric 
effect size measure. In our context, given the different 
performance metrics (such as Precision and Recall), the A 
statistics measures the probability that running an algorithm B1 
(NSGA-II) yields better performance than running another 
algorithm B2 (such as GA). If the two algorithms are equivalent, 
then A = 0.5.  

An often-omitted aspect in metaheuristic search is the tuning 
of algorithm parameters. In fact, parameter setting influences 
significantly the performance of a search algorithm on a particular 
problem. For this reason, for each search algorithm and each 
system, we performed a set of experiments using several 
population sizes: 10, 20, 30, 40 and 50. The stopping criterion was 
set to 100,000 fitness evaluations for all search algorithms in 
order to ensure fairness of comparison. We used a high number 
of evaluations as a stopping criterion since our approach requires 
involves multiple objectives. Each algorithm was executed 30 
times with each configuration and then the comparison between 
the configurations was performed based on different metrics 
described previously using the Friedman test. The other 
parameters values were fixed by trial and error and are as follows: 
(1) crossover probability = 0.4; mutation probability = 0.2 where 
the probability of gene modification is 0.1.  

 

4.4 Results 

4.4.1 Results for RQ1 

The results of Table 2 and Figures 7 to 9 confirm the 
efficiency of our multi-objective approach to identify the most 
relevant classes for bug reports that include the bugs on the 6 open 
source systems. Table 2 shows the average precision@k results 
of our multi-objective technique on the different six systems, with 
k ranging from 5 to 20. For example, most of the recommended 
classes to inspect in the top 5 (k=5) are relevant with a precision 
of 89%. The lowest precision is around 70% for k=20 which is 
still could be considered acceptable since most of the bug reports 
do not have many classes to inspect. In terms of recall, Table 2 
confirms that the majority of the expected classes to recommend 
are located in the top 20 (k=20) with an average recall score of 
94%. An average of more than 72% of classes recommended in 
the top5 cover the expected buggy classes.  

The average accuracy@k results on the different six systems 
are described in Table 2 showing that an average of 68%, 86%, 
94% and 97% are achieved for k = 5, 10, 15 and 20 respectively. 
These results confirm that if we recommend only 10 classes to 

programmers, we can make correct recommendations for 86% of 
the thousands of collected bug reports for every system.  

Table 2. Median Precision@k, Recall@k and Accuracy@k 
on 30 independent runs. The results were statistically 

significant on 51 independent runs using the Friedman test 
with a 95% confidence level (α < 5%). 

k Precision@k 

 NSGA-II
Bug 

Scout 
Bug 

Locator LR LS HS RS GA 

5 89 76 78 81 69 71 34 71 
10 82 71 74 76 61 64 29 61 
15 74 63 69 72 57 58 33 55 
20 68 48 51 58 48 51 24 53 

 

k Recall@k 

 NSGA-II
Bug 

Scout 
Bug 

Locator LR LS HS RS GA 

5 72 59 62 64 54 56 27 54 
10 81 64 67 72 60 62 31 62 
15 87 69 72 79 65 67 26 69 
20 94 74 80 83 70 72 24 76 

 

k Accuracy@k 

 NSGA-II
Bug 

Scout 
Bug 

Locator LR LS HS RS GA 

5 68 41 44 49 37 34 29 38 
10 86 62 69 71 56 59 24 59 
15 94 74 78 82 68 72 31 79 
20 97 79 82 86 74 77 33 77 

 

 

Figure 7: Average Precision@k of NSGA-II, BugScout, 
BugLocator, LR, LS, HS, RS and GA on the different systems for 
30 independent runs.  

Figures 7 to 9 summarize the results of the precision@10, 
recall@10 and accuracy@10 for every of the studied systems. 
The obtained results clearly show that most of the buggy classes 
were recommended correctly by our multi-objective approach in 
the top 10 with a minimum precision of 78% for AspectJ, a 



minimum recall of 79% for Eclipse and a minimum accuracy of 
82% for Eclipse as well. Thus, we noticed that our technique does 
not have a bias towards the evaluated system. As described in 
Figures 7-9, in all systems, we had almost similar average scores 
of precision, recall and accuracy. All these results based on the 
different measures were statistically significant on 30 
independent runs using the Friedman test with a 95% confidence 
level (α < 5%).  

To answer RQ1, the obtained results on the six open source 
systems using the different evaluation metrics of precision, recall 
and accuracy clearly validate the hypotheses that our multi-
objective approach can recommend efficiently relevant buggy 
classes to inspect for each bug report. 

 

Figure 8: Average Recall@k of NSGA-II, BugScout, 
BugLocator, LR, LS, HS, RS and GA on the different systems for 
30 independent runs.  

 

Figure 9: Average Accuracy@k of NSGA-II, BugScout, 
BugLocator, LR, LS, HS, RS and GA on the different systems for 
30 independent runs. 

4.4.2 Results for RQ2 

Concerning RQ2, Table 2 and Figures 6-11 confirm that 
NSGA-II is better than random search and the three mono-
objective formulations (LS, HS and GA) based on the three 
metrics of precision, recall and accuracy on all the 6 systems. 
Three mono-objective formulations were implemented:  

1. with an equal aggregation of both objectives (GA);  

2. a mono-objective algorithm with the only objective of 
lexical similarity (LS); and  

3. a mono-objective algorithm with the only objective of 
history similarity (HS).  

The average accuracy, precision and recall values of random 
search (RS) on the six systems are lower than 35% as described 
in Table 2. This can be explained by the huge search space to 
explore to identify the best order of classes to inspect for bugs 
localization. The performance of the three mono-objective 
algorithms was much better than random search but lower than 
our multi-objective formulation. The aggregation of both 
objectives into one objective generates better results on all the six 
systems than the two other algorithms considering each objective 
separately. Thus, an interesting observation is the clear 
complementary between the history-based similarity function and 
the lexical-based measure. In fact, we found that the buggy 
classes that are not detected by one of the two algorithms were 
identified by the other algorithm. The average precision, recall 
and accuracy of each of the two algorithms (LH and HS) was 
between 67% and 72% but the aggregation of both objectives into 
one in our multi-objective formulation improve a lot the obtained 
results. In addition, since NSGA- II outperforms the mono-
objective GA then it is clear that the two objectives of 
correctness/relevance and the number of recommended classes 
are conflicting. 

All these results were statistically significant on 30 
independent runs using the Friedman test with a 95% confidence 
level (α < 5%). We have also found the following results of the 
Vargha Delaney A_{12} statistic : a) On large and medium scale 
systems (Birt, JDT, Eclipse UI and AspectJ ) NSGA-II is better 
than all the other algorithms based on all the performance metrics 
with an A effect size higher than 0.93; b) On small scale systems 
(Tomcat, SWT), NSGA-II is better than all the other algorithms 
with a an A effect size higher than 0.96. 

We conclude that there is empirical evidence that our multi-
objective formulation surpasses the performance of random 
search and mono-objective approaches thus our formulation is 
adequate (this answers RQ2). 

4.4.3 Results for RQ3 

Since it is not sufficient to compare our approach with only 
search-based algorithms, we compared the performance of 
NSGA-II with three different bugs localization techniques not 
based on heuristic search [7] [8] [9]. Table 2 and Figures 7 to 9 
present the precision@k, recall@k and accuracy@k results for 
the 3 implemented methods, with k ranging from 5 to 20. NSGA- 
II achieves better results, on average, than the other three methods 
on all six projects. For example, our approach achieved, on 
average, Precision@k of 90%, 84%, 73% and 69% are achieved 
for k= 5, 10, 15 and 20 respectively as described in Table 2. In 
comparison, BugLocator achieved an average Precision@k of 
68%. BugScout and LR achieved an average Precision@k of 66% 
and 72%, respectively. Similar observations are also valid for the 
recall@k and accuracy@k. 

Based on the results of Figures 7-9 Birt and Tomcat are two 
projects where LR performs close to the NSGA-II approach. For 
many bug reports in Birt, most of the buggy classes are those that 
have been frequently fixed in previous bug reports which explain 
the relatively high performance obtained by LR and NSGA-II. 
Since the bug fixing information is exploited by both the NSGA-
II approach and LR, it is expected that they obtain the best 
performance results. 

To answer RQ3, the obtained results on the six open source 
system using the different evaluation metrics of precision, recall 
and accuracy clearly validate the hypotheses that our multi-



objective approach outperforms several bugs localization 
techniques not based on heuristic search. 

 

5. DISCUSSIONS 
Impact of Data Size. To evaluate the impact of increasing 

the size of the data used (history of previous bug reports and 
changes), we executed a scenario on the JDT project in which we 
increased the size of the dataset incrementally fold by fold until 
we include all the 9 folds in the dataset. It is clear from Figure 12 
that for all the three metrics of Precision@k, Recall@k and 
Accuracy@k that increasing the size of the previous bug reports 
do not improve all the three metrics. This can be explained by the 
fact that recent bug reports and history of changes are the most 
important part of the data. The obtained results confirm also that 
our multi-objective approach did not require a large set of data to 
generate good results in terms of finding possible buggy classes 
for bug reports. 

 

Figure 10: Impact of the data training size (folds) on the 
three metrics based on the JDT project. 

Execution time. We executed our multi-objective algorithm 
on a desktop computer with CPU Intel(R) Core(TM) i7 3.2 GHz 
and 20G RAM. Figure 13 presents the execution time 
performance of our approach. The average execution time on the 
different systems was around 18 minutes. The highest execution 
time was observed on the JDT system with 23 minutes and the 
lowest one was around 11 minutes for SWT. We believe that the 
execution is reasonable since bugs localization is not a real-time 
problem. We also found that the execution time is related to the 
number of files to parse and the history of bug reports. 

 

Figure 11: Average execution time (in minutes) of NSGA-
II, on the different systems for 30 independent runs on the 
different systems 

6. THREATS TO VALIDITY 
We explore, in this section, the factors that can bias our 

empirical study. These factors can be classified in three 
categories: construct internal and external validity. Construct 
validity concerns the relation between the theory and the 
observation. Internal validity concerns possible bias with the 
results obtained by our proposal. Finally, external validity is 
related to the generalization of observed results outside the 
sample instances used in the experiment. 

In our experiments, construct validity threats are related to 
the absence of similar work that uses search-based techniques for 
bug’s localization. For that reason, we compared our proposal 
with different mono-objective formulations to check the need for 
a multi-objective approach. A construct threat can also be related 
to the corpus of manually localized bugs for every bug report. A 
limitation related to our experiments is the difficulty to set the 
thresholds for some of the parameters of Bug Locator. In fact, we 
used the default thresholds used by the authors that can have an 
impact on the quality of the generated results. 

We take into consideration the internal threats to validity in 
the use of stochastic algorithms since our experimental study is 
performed based on 30 independent simulation runs for each 
problem instance, and the obtained results are statistically 
analyzed by using the statistical test with a 95% confidence level 
(α = 5%). The parameter tuning of the different optimization 
algorithms used in our experiments creates another internal threat 
that we need to evaluate in our future work by additional 
experiments to evaluate the impact of the parameters on the 
quality of the results. 

External validity refers to the generalization of our findings. 
In this study, we performed our experiments on six different 
widely-used open-source systems belonging to different domains 
and with different sizes. However, we cannot assert that our 
results can be generalized to other applications, other 
programming languages, and to other practitioners. 

 

7. CONCLUSION AND FUTURE WORK 
 

We propose, in this paper, an automated approach to localize 
and rank potential relevant classes for bug reports. Our approach 
finds a trade-off between minimizing the number of 
recommended classes and maximizing the correctness of the 
proposed solution using a multi-objective optimization algorithm. 
The correctness of the recommended classes is estimated based 
on the use of the history of changes and bug-fixing, and the lexical 
similarity between the bug report description and the API 
documentation. We have executed extensive empirical 
evaluations on 6 large open-source software projects with more 
than 22,000 bug reports in total based on an existing benchmark. 
The results on the before-fix versions show that our system 
outperforms, on average, three state-of-the-art approaches not 
based on search techniques [7] [8] [9]. In particular, our search-
based approach is able to successfully locate the true buggy 
methods within the top 10 recommendations for over 87% of the 
bug reports. 

As part of our future work, we plan to evaluate our multi- 
objective approach on further projects in other different 
programming languages. In addition, we will extend our work to 



address the problem of the software bugs management and 
prioritization using multi-objective search techniques. 

 

8. REFERENCES 
 

[1] Bruegge, B., and Dutoit, A.H.: ‘Object-Oriented Software 
Engineering Using UML, Patterns and Java-(Required)’ 
(Prentice Hall, 2004. 2004) 

[2] Bettenburg, N., Just, S., Schröter, A., Weiss, C., Premraj, 
R., and Zimmermann, T.: ‘What makes a good bug report?’, 
in Editor (Ed.) 

[3] Bettenburg, N., Premraj, R., Zimmermann, T., and Kim, S.: 
‘Duplicate bug reports considered harmful… really?’, in 
Editor (Ed.) (IEEE, 2008, edn.), pp. 337-345 

[4] Fischer, M., Pinzger, M., and Gall, H.: ‘Analyzing and 
relating bug report data for feature tracking’ (IEEE, 2003. 
2003) 

[5] Sun, C., Lo, D., Wang, X., Jiang, J., and Khoo, S.-C.: ‘A 
discriminative model approach for accurate duplicate bug 
report retrieval’, in Editor (Ed.) (ACM, 2010, edn.), pp. 45-
54 

[6] Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T.: ‘A fast 
and elitist multiobjective genetic algorithm: NSGA-II’, 
IEEE Transactions on Evolutionary Computation, 2002, 6, 
(2), pp. 182-197 

[7] Ye, X., Bunescu, R., and Liu, C.: ‘Learning to rank relevant 
files for bug reports using domain knowledge’, in Editor 
(Ed.) (ACM, 2014, edn.), pp. 689-699 

[8] Nguyen, A.T., Nguyen, T.T., Al-Kofahi, J., Nguyen, H.V., 
and Nguyen, T.N.: ‘A topic-based approach for narrowing 
the search space of buggy files from a bug report’, in Editor 
(Ed.) (IEEE, 2011, edn.), pp. 263-272 

[9] Zhou, J., Zhang, H., and Lo, D.: ‘Where should the bugs be 
fixed? more accurate information retrieval-based bug 
localization based on bug reports’, in Editor (Ed.) (IEEE, 
2012, edn.), pp. 14-24 

[10] Harman, M., Mansouri, S.A., and Zhang, Y.: ‘Search-based 
software engineering: Trends, techniques and applications’, 
ACM Computing Surveys (CSUR), 2012, 45, (1), pp. 11 

[11] Dumais, S.T.: ‘Latent semantic analysis’, Annual review of 
information science and technology, 2004, 38, (1), pp. 188-
230 

[12] Blei, D.M., Ng, A.Y., and Jordan, M.I.: ‘Latent dirichlet 
allocation’, the Journal of machine Learning research, 
2003, 3, pp. 993-1022 

[13] Salton, G., Wong, A., and Yang, C.-S.: ‘A vector space 
model for automatic indexing’, Communications of the 
ACM, 1975, 18, (11), pp. 613-620 

[14] Ashok, B., Joy, J., Liang, H., Rajamani, S.K., Srinivasa, G., 
and Vangala, V.: ‘DebugAdvisor: a recommender system 
for debugging’, in Editor (Ed.) (ACM, 2009, edn.), pp. 373-
382 

[15] Wong, C.-P., Xiong, Y., Zhang, H., Hao, D., Zhang, L., and 
Mei, H.: ‘Boosting bug-report-oriented fault localization 
with segmentation and stack-trace analysis’, in Editor (Ed.) 
(IEEE, 2014, edn.), pp. 181-190 

[16] Saha, R.K., Lease, M., Khurshid, S., and Perry, D.E.: 
‘Improving bug localization using structured information 
retrieval’, in Editor (Ed.) (IEEE, 2013, edn.), pp. 345-355 

[17] Saha, R.K., Lawall, J., Khurshid, S., and Perry, D.E.: ‘On 
the effectiveness of information retrieval based bug 

localization for c programs’, in Editor (Ed.) (IEEE, 2014, 
edn.), pp. 161-170 

[18] Rao, S., and Kak, A.: ‘Retrieval from software libraries for 
bug localization: a comparative study of generic and 
composite text models’, in Editor (Ed.) (ACM, 2011, edn.), 
pp. 43-52 

[19] Ye, X., Bunescu, R., and Liu, C.: ‘Mapping Bug Reports to 
Relevant Files: A Ranking Model, a Fine-grained 
Benchmark, and Feature Evaluation’, IEEE Transactions on 
Software Engineering, 2016, 42, (2), pp. 379-402 

[20] Harman, M., and Jones, B.F.: ‘Search-based software 
engineering’, Information and software Technology, 2001, 
43, (14), pp. 833-839 

[21] Núñez, A., Merayo, M.G., Hierons, R.M., and Núñez, M.: 
‘Using genetic algorithms to generate test sequences for 
complex timed systems’, Soft Computing, 2013, 17, (2), pp. 
301-315 

[22] Henard, C., Papadakis, M., and Le Traon, Y.: ‘Mutation-
based generation of software product line test 
configurations’: ‘Search-Based Software Engineering’ 
(Springer, 2014), pp. 92-106 

[23] Shelburg, J., Kessentini, M., and Tauritz, D.R.: ‘Regression 
testing for model transformations: A multi-objective 
approach’: ‘Search Based Software Engineering’ (Springer, 
2013), pp. 209-223 

[24] Dreyton, D., Araújo, A.A., Dantas, A., Freitas, Á., and 
Souza, J.: ‘Search-Based Bug Report Prioritization for Kate 
Editor Bugs Repository’: ‘Search-Based Software 
Engineering’ (Springer, 2015), pp. 295-300 

[25] Tan, P.-N., Steinbach, M., and Kumar, V.: ‘Introduction to 
data mining’ (Pearson Addison Wesley Boston, 2006. 
2006) 

[26] Enslen, E., Hill, E., Pollock, L., and Vijay-Shanker, K.: 
‘Mining source code to automatically split identifiers for 
software analysis’, in Editor (Ed.) (IEEE, 2009, edn.), pp. 
71-80 

[27] Salton, G., and McGill, M.J.: ‘Introduction to modern 
information retrieval’, 1986 

[28] Goldberg, D.E., and Deb, K.: ‘A comparative analysis of 
selection schemes used in genetic algorithms’, Foundations 
of genetic algorithms, 1991, 1, pp. 69-93 

[29] Branke, J., Deb, K., Dierolf, H., and Osswald, M.: ‘Finding 
knees in multi-objective optimization’, in Editor (Ed.) 
(Springer, 2004, edn.), pp. 722-731 

[30] Arcuri, A., and Fraser, G.: ‘Parameter tuning or default 
values? An empirical investigation in search-based 
software engineering’, Empirical Software Engineering, 
2013, 18, (3), pp. 594-623 

[31] Bialas, W., Karwan, M., and Shaw, J.: ‘A parametric 
complementary pivot approach for two-level linear 
programming’, State University of New York at Buffalo, 
1980, 57 

View publication statsView publication stats

https://www.researchgate.net/publication/307090396

