Method-Level Bug Localization: A Hybrid Multi-objective Search

Approach

Rafi Almhana!, Marouane Kessentini' and Wiem Mkaouer?

ARTICLE INFO

Keywords:

Bugs localization

Fault localization

Search-based software engineering
Bug reports

Multi-objective search

Simulated annealing

Software maintenance

Abstract

Context: One of the time-consuming maintenance tasks is the localization of bugs especially in large
software systems. Developers have to follow a tedious process to reproduce the abnormal behavior
then inspect a large number of files. While several studies have been proposed for bugs localization,
the majority of them are recommending classes/files as outputs which may still require high inspection
effort. Furthermore, there is a significant difference between the natural language used in bug reports
and the programming language which limits the efficiency of existing approaches since most of them
are mainly based on lexical similarity.

Objective: In this paper, we propose an automated approach to find and rank the potential methods
in order to localize the source of a bug based on a bug report description.

Method: Our approach finds a good balance between minimizing the number of recommended
classes and maximizing the relevance of the proposed solution using a hybrid multi-objective op-
timization algorithm combining local and global search. The relevance of the recommended code
fragments is estimated based on the use of the history of changes and bug-fixing, and the lexical sim-
ilarity between the bug report description and the API documentation. Our approach operates on two
main steps. The first step is to find the best set of classes satisfying the two conflicting criteria of rele-
vance and the number of classes to recommend using a global search based on NSGA-II. The second
step is to locate the most appropriate methods to inspect, using a local multi-objective search based
on Simulated Annealing (MOSA) from the list of classes recommended by the first step.

Results: We evaluated our system on 6 open source Java projects, using the version of the project
before fixing the bug of many bug reports. Our hybrid multi-objective approach is able to successfully
locate the true buggy methods within the top 10 recommendations for over 78% of the bug reports
leading to a significant reduction of developers’ effort comparing to class-level bug localization tech-

niques.

Conclusion: The experimental results show that the search-based approach significantly outper-
forms four state-of-the-art methods in recommending relevant files for bug reports.

1. Introduction

A software bug is a coding error that may cause abnor-
mal behaviors and incorrect results when executing the sys-
tem [1]. After identifying an unexpected behavior of the
software project, a user or developer will report it in a doc-
ument, called a bug report [2]. Thus, a bug report should
provide useful information to identify and fix the bug. The
number of these bug reports can be large. For example,
MOZILLA had received more than 420,000 bug reports [3].
These reports are important for managers and developers
during their daily development and maintenance activities
including bug localization [4]. The process of finding the
relevant source code fragments (methods, classes, etc.) that
need to be modified to fix the bug according to a bug report
description is defined as bug localization [5].

A developer always uses a bug report to reproduce the
abnormal behavior to find the origin of the bug. However,
the poor quality of bug reports can make this process tedious
and time-consuming due to missing information. To find
the cause of a bug, developers are not only using their own
knowledge to investigate the bug report but interact with peer

¥4 ralmhana@umich. edu (R. Almhana); marouane@umich.edu (M.
Kessentini); mwmvse@rit.edu (W. Mkaouer)
IDepartment of Computer and Information Science, University of
Michigan.
2Department of Software Engineering, Rochester Institute of Technol-
ogy.

developers to collect additional information. An efficient au-
tomated approach for locating and ranking important code
fragments for a specific bug report may lead to improve the
productivity of developers by reducing the time to find the
cause of a bug [4].

The majority of existing bug localization studies are
mainly based on lexical matching scores between the state-
ments of bug reports and the name of code elements in soft-
ware systems [6, 7, 8]. However, there is a significant differ-
ence between the natural language used in bug reports and
the programming language which limits the efficiency of ex-
isting approaches.

We considered, in this work, the following important ob-
servations. First, API documentation of the classes can be
more useful than the name of code elements or comments
to estimate the similarity between code fragments and bug
reports [9]. Second, code fragments associated with previ-
ously fixed bug reports may be relevant also to the current
report if these previously fixed bug reports are similar to a
current bug report [10]. Third, a code fragment that was
fixed recently is more likely to still contain bugs than an-
other class that was last fixed a long time ago [2]. Fourth,
a code fragment that has been frequently fixed, tend to be
fault-prone and may cause more than one abnormal behav-
ior in the future [11]. Finally, the recommendation of a large
number of classes to inspect may make the process of finding
the cause of a bug time-consuming.

Almhana et al.: Preprint submitted to Elsevier

Page 1 of 19

Method-Level Bug Localization Using Hybrid Multi-objective Search

To address some of these challenges, we proposed in our
previous work [12] a comprehensive approach for bugs lo-
calization based on bug reports description. We utilized a
multi-objective optimization algorithm [13] to find a bal-
ance between maximizing lexical and history-based simi-
larity, and minimizing the number of recommended classes.
The problem is formulated as a search for the best combina-
tion and sequence of classes from all the classes of the sys-
tem that optimize as much as possible the balance between
the above two conflicting objectives. The main feedback re-
ceived from the participants of our experiments is that the
file/class level recommendations are still time-consuming to
explore and they very much prefer a precise localization at
the method level.

In this work, we extended our previous work [12] to pro-
vide method-level bug localization, instead of the class-level
bug localization. Our approach optimizes the trade-off be-
tween minimizing the number of recommended classes and
maximizing the relevance of the proposed solution using a
hybrid multi-objective optimization algorithm combining lo-
cal and global search. The relevance of the recommended
code fragments is estimated based on the use of the history
of changes and bug-fixing, and the lexical similarity between
the bug report description and the API documentation. Our
approach includes two main steps: finding the best set of
classes satisfying the two conflicting criteria of relevance
and the number of classes to recommend and locating the
most appropriate methods to inspect in those classes. We ac-
complish the former using a global search based on NSGA-II
and the latter using a local multi-objective search based on
Simulated Annealing (MOSA) [14].

We have executed an extensive empirical evaluation of 6
large open-source software projects with more than 22,000
bug reports in total based on an existing benchmark [15].
The experimental results show that the search-based approach
significantly outperforms four state-of-the-art techniques in
recommending relevant files for bug reports including our
previous work at the class [7, 16, 17, 12] and method [16]
levels. In particular, our hybrid multi-objective approach
can successfully locate the true buggy methods within the
top 10 recommendations at the methods level for over 78%
of the bug reports.

The primary contributions of this paper can be summa-
rized as follows:

e To the best of our knowledge and based on recent sur-
veys [18], the paper proposes one of the first search-
based software engineering approaches to address the
problem of finding relevant code fragments for bug re-
ports. The approach combines the use of lexical and
history-based similarity measures to locate and rank
relevant code fragments for bug reports while mini-
mizing the number of recommended classes.

e We extended our previous work by proposing a new
hybrid multi-objective formulation, using NSGA-II
and MOSA, that combines global and local search to

localize bugs at the method level instead of the class
level.

e The paper reports the results of an empirical study
with an implementation of our hybrid multi-objective
approach. The obtained results provide evidence to
support the claim that our proposal is more efficient,
on average, than existing techniques for bugs localiza-
tion at the method and class levels [7, 16, 17] based on
a benchmark of 6 open source systems [19]. We also
compared the results of our hybrid multi-objective ap-
proach with a mono-objective formulation to make sure
that our objectives are conflicting and our previous
work which based only on a global search.

The remainder of this paper is as follows: Section 2 is
dedicated to the related work. Section 3 describes the pro-
posed approach and the hybrid search algorithm. The evalu-
ation of our approach and its results on some research ques-
tions are explained in Section 4 while Section 5 further dis-
cusses the obtained results. Section 6 describes the threats
to validity related to our experiments. Finally, concluding
remarks and future work are provided in Section 7.

2. Related Work

In this section, we survey different studies related to the
areas of bug localization and search-based software engi-
neering [20, 12, 21, 22, 23, 24, 25].

2.1. Bug Localization

The problem of bug localization can be considered as
searching the source of a bug report given its description.
To address this problem, the majority of existing studies is
based on the use of Information-Retrieval (IR) techniques
through the detection of textual and semantic similarities be-
tween a newly given report and source code entities [6]. Sev-
eral IR techniques have been investigated, namely the Latent
Semantic Indexing (LSI) [26], Latent Dirichlet Allocation
(LDA) [27] and the Vector Space Model (VSM) [28]. Also,
hybrid models extracted from these IRs techniques to tackle
the problem of bug localization were proposed [15].

We summarize, in the following, the different tools and
approaches proposed in the literature based on the above
IR techniques. BugScout [7] is a topic-based approach us-
ing LDA to analyze the bug related information (descrip-
tion, comments, external links, etc.) to detect the source of
a bug and duplicated bug reports. The main limitation of
BugScout is the dependency of the results on the keywords
entered by the user. DebugAdvisor [8] is a bug investigation
system that takes as input a bug report in terms of text queries
then uses them to mine existing fixed bug repository and gen-
erate a graph of possible reports. However, DebugAdvisor
accuracy depends on the accuracy of the report’s description
and its accuracy when describing the bug and its related code
entities.

Buglocator [17] combines several similarity scores from
previous bug reports for bug localization. It generates a VSM

Almhana et al.: Preprint submitted to Elsevier

Page 2 of 19

Method-Level Bug Localization Using Hybrid Multi-objective Search

model to extract suspect source files for a given bug report.
Then, BugLocator mines previously fixed bug reports along
with related files involved to rank suspect code fragments.
The main issue raised in this work is the proneness of the
weight density to the noise in the large files. To overcome
this limitation, the work of Wong et al. [29] added segmen-
tation and stack trace analysis to improve the performance of
the BuglLocator approach. The limitation of this extension
is that execution traces are not necessarily available in bug
repositories.

BLUIR [30] has been proposed also to compare a bug
report to the structure of source files. It decomposes reports
into summaries and then uses the structural retrieval to cal-
culate similarities between these
tokenized elements and source code ones to rank source code
files. Sahaetal. [31] extended BLUIiR to consider similar re-
ports information, similarly to BuglLocator as an additional
similarity score. DHbPd [32] incorporated code change in-
formation for bug localization. The main idea is to consider
recently changed source code elements as potential candi-
dates for hosting a bug.

Ye et al. [15] have modeled the similarity between bug
reports and source code through several characteristics that
are captured through the use of 6 similarity features that de-
scribe the projects’ domain knowledge. The combination of
these measures is fed to a ranking heuristic called learning-
to-rank. The ranking model returns the top candidate source
files to investigate for a given bug report. The main original-
ity of their work is the use of project’s API description and
auto-generated documentation as one of the features to uti-
lize to reduce the lexical gap between the human description
and the source code.

Ye et al. [16] extended their previous work by extend-
ing their ranking features utilized by learning-to-rank from
6 to 19. Besides the existing surface lexical similarity, API-
based lexical similarity, collaborative filtering, code elements
naming similarity, fixed bugs frequency, they included other
source code characteristics that can be extracted from the
projects such as summaries, naming conventions, interclass
dependencies, etc. Although taking these features into ac-
count has given better results in terms of better files rank-
ing, such information may not be available in all projects
and sometimes it may be outdated and that may deteriorate
the localization accuracy.

Amalgam [33] introduced the aggregation of relevant
similarities extracted from source files, version history data
and previously resolved bugs to calculate a global score for
ranking files. This approach has given promising results
compared to the previous techniques as it does not only com-
bines code structure with previous reports but also it involves
historical data to maximize the bug information coverage
and enhance the localization accuracy.

Lamkanfi et al. developed a binary classifier to deter-
mine whether or not a bug is severe [34]. The report features
were used as a training set to conduct a comparison between
several classifiers, namely SVM, Naive Bayes, Multinomial
Naive Bayes, and Nearest Neighbor. The experiments have

shown that these classifiers outperform random severity as-
signment formulations. Similarly, the work of Lo et al. [35]
presented a classification engine labeled GRAY that extends
the linear regression to predict the priority of bugs, but not
bugs localization, while taking into account various external
and internal report characteristics, extracted as features, then
used to train the model.

Table 1 shows the most recent and relevant studies to our
approach. It illustrates the differences among those studies
in terms of input, output, and technique used to solve the bug
localization problem. We notice that among all the studies
listed in Table 1, the majority of them are related to recom-
mend classes using Information Retrieval (IR) techniques.
There are four different studies that addressed method-level
bug localization. Youm et al. [36] utilized bug report de-
scription with code changes, source code, comments and
stack traces and developer’s log to find relevant methods.

Another approach is proposed by Lukins et al. [37] to lo-
calize bugs at the methods level using a static Latent Dirich-
let allocation (LDA) technique which is solely based on source
code. In another study [16], Ye et al. used learning to rank
technique to develop a ranking model in which they assign
a weight for each source code file as a result of several fea-
tures such as source code, bug description, code changes his-
tory and bugs-fixing history. The proposed approach can be
adopted for both class and method levels. We used this ap-
proach as one of the baselines to evaluate the performance of
our approach since the authors provided a replication pack-
age.

2.2. Search-Based Software Engineering

Search-Based Software Engineering (SBSE) uses a com-
putational search approach to solve optimization problems in
software engineering [45]. Once a software engineering task
is framed as a search problem, by defining it in terms of so-
lution representation, fitness function, and solution change
operators, there is a multitude of search algorithms that can
be applied to solve that problem. Many search-based soft-
ware testing techniques have been proposed for test cases
generation [46, 47], mutation testing [48, 49], and regres-
sion testing [50]. However, the problem of bugs localization
was not addressed using SBSE before our work [12].

The closest problem addressed using SBSE techniques
is the bugs prioritization problem [51]. A mono-objective
genetic algorithm was proposed to find the best sequence
of bugs resolution that maximizes the relevance and impor-
tance of the bugs to fix while minimizing the cost. The au-
thors formulated the bugs prioritization as an optimization
problem. Each incoming bug is assigned three scores: the
relevance score reflects developers’ opinions about how sig-
nificant is a bug in the repository compared to others, the im-
portance score represents how fast the bug should be fixed,
while the third score is the bug severity. These scores are
aggregated in a fitness function. The authors deployed the
genetic algorithm to randomly generate a population of pos-
sible orderings that evolve towards the best sequence of bugs
resolution that maximizes the relevance and importance while

Almhana et al.: Preprint submitted to Elsevier

Page 3 of 19

Method-Level Bug Localization Using Hybrid Multi-objective Search

Table 1
Recent Studies
Study Input Output Technique Date Category
Huang, Qiao, et Bug Report, Package IR, ML Oct 2017
al. [38] Source code
Wen, Ming, et al. Developer's log, Class IR Sep 2016 Information Retrieval
[39] Software Changes.
Youm, Klaus Comments, Stack Method IR Feb 2017
Changsun, et al. Traces, Devel-
[36] oper's Log and
Code Changes.
Lukins, Stacy K., Source Code Method IR (LDA) Sep 2010
et al. [37]
Tantithamthavorn, Source Code, Bug Method IR-based Classifier Oct 2018
Chakkrit, et al. Report
[40]
Ye, Xin, et al. [41] Source Code, Bug Method Ranking Model Sep 2015)
Description, Code Ranking Model
Changes
Pablo Loyola, et Code Changes Class Ranking Model Oct 2018
al. [42]
An Ngoc Lam, et Source code, Bug Class IR (rVSM), neural May 2017
al. [43] Report network Neural Network
Yan Xiao, et al. Bug Report Class deep learning July 2018
[44] translation
Almhana, Rafi, et Source code, Bug Class Search Based Sep 2016 Search Based
al. [12] Report, History of Software Engi-
Bug Report neering

minimizing the severity. To overcome the limitation of ag-
gregating two attributes that may experience conflicts, they
extended their work [52] to better find the trade-off between
bugs with low relevance to the users may have high severity
scores.

3. The Hybrid Multi-Objective Formulation
for Bug Localization

We first present an overview of our hybrid multi-objective
approach to identify and prioritize relevant methods for bug
reports, and then we describe the details of our formulation.

3.1. Approach Overview

Our approach aims at exploring a large search space to
find relevant methods, to inspect by developers, given a de-
scription of a bug report. The search space is determined not
only by the number of possible method combinations to rec-
ommend but also by the order in which they are proposed to
the developer. In fact, bug reports may require the inspection
of more than one method to identify and fix bugs.

Due to this large search space of potential solutions to
explore, we propose a heuristic-based optimization method
including two main steps. The first step, based on a global

search, operates on the classes level while the second one,
based on a local search, operates on the methods level of
selected classes after the first step. A local search is used
in the second step due to the reasonable size of the search
space that consists of the methods of identified classes. We
note that the search space at the method level after the first
filtering step at the class level is still a large search problem
due to the typical large size of classes. We noticed in our pre-
vious work for bugs localization at the class level that each
file might have on average over 20 methods per class [12].
The difference between the two search strategies is not
related to the objective space but to the change operators
and population size/generation [53]. In global search, we
use a population of several solutions at each iteration, and
both crossover and mutation operators to create a significant
perturbation of the solutions at each iteration. However, the
local search is limited to one solution (not a population) at
each iteration and only a limited change operator (mutation)
to create a limited variation at each iteration when generat-
ing a new solution. The rationale behind the difference of
both search strategies that the population and both change
operators can help to explore a large search space to identify
relevant solutions using the global search (all the classes of
the systems). Once these relevant solutions are identified

Almhana et al.: Preprint submitted to Elsevier

Page 4 of 19

Method-Level Bug Localization Using Hybrid Multi-objective Search

then a local search can be applied to a smaller search space
(limited number of classes that may contain the bug) using
one solution at each iteration and only a mutation operator.
The local search is faster than running another global search
due to the limited search space [53].

The general structure of our approach is sketched in Fig-
ure 1. It takes 5 inputs as follows:

e The source code of the project to be inspected,

The API specifications,

The description of the bug report,

A list of previous bug reports of the project,

The history of the applied changes in previous releases
of the project.

Our approach generates as output, in the first step, a near-
optimal sequence of ranked classes that maximizes the rele-
vance to the bug report and minimizes the number of recom-
mended classes. The list of identified classes for inspection
can be checked by the developer, as an optional step, to fur-
ther reduce the number of class recommendations as shown
in Figure 2. Then, the second step is executed to generate
as output a near-optimal sequence of ranked methods that
maximize the relevance to the bug report and minimizes the
number of recommended methods out of the classes identi-
fied in the first step.

Both heuristic-based optimization steps are formulated
based on two main conflicting objectives. The first objective
is the correctness function that includes two routines:

e Maximizing the Lexical similarity between
recommended code fragments (e.g. classes for the first
step and methods for the second step) and the descrip-
tion of the bug report (including the API and name of
code elements similarity);

e Maximizing the history-based function score that in-
cludes the number of recommended code fragments
that have been fixed in the past, recent changes intro-
duced by the developers to these code fragments and
similarities with previous bug reports.

The second objective is to minimize the number of code frag-
ments to recommend. We note that a code fragment for the
global search algorithm is a class while it is a method for
the local search algorithm. Thus, the total number of dif-
ferent fitness functions is four. The first fitness function for
the global search algorithm evaluates the lexical similarity
and history-based information between the classes and the
bug reports/API while the second fitness function counts the
number of classes to inspect by the developer. For the local
search, the first fitness function calculates the lexical similar-
ity and history-based information at the methods level while
the second fitness function estimates the number of methods
to be inspected by the developer. Thus, a total of four fitness
functions are defined with two functions for each search al-
gorithm.

Definition 1: Pareto optimality

A solution x* € Q is Pareto optimal if Vx € Q and
I={1,.,M} either Vm € I we have f,(x) = f,(x*) or
there is at least one m € I such that f,,(x) > f,,(x*).

Definition 2: Pareto dominance

A solution x is said to dominate another solution v (
denoted by f(x) < f(v)) if and only if f(x) is partially
less than f(v). In other words, Vm € {1, ..., M} we have
fu®) < f,(v) and Im € {1, ..., M} where f, (x) < f,,(V).

Definition 3: Pareto optimal set

For a given MOP f(x), the Pareto optimal set is
Pr={xeQ-3Ix" € Q, f(x') < f(x)}.

It is obvious that those two objectives are conflicting since
maximizing the relevance of recommended code fragments
may lead to low precision and thus increase the number of
recommended code fragments. Thus, we consider, in this pa-
per, the task of bugs localization as a hybrid multi-objective
optimization problem. We used the non-dominated sorting
genetic algorithm (NSGA-II) as a global search for the class
level [13] and the multi-objective Simulated Annealing al-
gorithm (MOSA) [14] as a local search for the method level.

When comparing the relative fitness of generated solu-
tions, both NSGA-II and MOSA utilize the idea of Pareto
optimality (Definition 1) using dominance (Definition 2) as
a basis for comparison [54]. The set of trade-off solutions is
called Pareto optimal solutions or non-dominated solutions,
and the image of this set in the objective space is called the
Pareto front. Hence, the output of NSGA-II and MOSA con-
sists in approximating the entire Pareto front (Definition 3)
[54].

The definition of Pareto optimality states that x* is Pareto
optimal if no feasible vector exists that would improve some
objectives without causing a simultaneous worsening in at
least one other objective.

In addition to Pareto Optimality and Pareto Dominance,
we need to define Pareto Optimal set and Pareto Optimal
Front.

In the following, we describe an overview of both algo-
rithms, the solution representation, a formal formulation of
the two objectives to optimize and the change operators.

3.2. NSGA-II

In this paper, we adapted one of the widely used multi-
objective algorithms called NSGA-II [13]. NSGA-II is a
powerful global search method stimulated by natural selec-
tion that is inspired by the theory of Darwin. Hence, the
basic idea of NSGA-II is to make a population of candidate
solutions evolve toward the near-optimal solution in order
to solve a multi-objective optimization problem. NSGA-II
is designed to find a set of optimal solutions, called non-
dominated solutions, also Pareto set. A non-dominated so-
lution is the one which provides a suitable compromise be-

Almhana et al.: Preprint submitted to Elsevier

Page 5 of 19

Method-Level Bug Localization Using Hybrid Multi-objective Search

Source code and API specifications

of the program to be inspected

Finding relevant classes for bug
reports using NSGA-II
Objective I: Maximize the relevance
of recommended classes
Objective 2: Minimize the number of

recommended classes.

The description of the bug report(s)

The history of the applied changes
in previous releases

Alist of previous bug reports

Definition 4: Pareto optimal front

For a given MOP f(x) and its Pareto optimal set P*,
the Pareto front is PF* = { f(x),x € P*}.

!

Best sequence of
classes to inspect

Finding relevant methods for bug
reports using MOSA
Objective I: Maximize the relevance
of recommended methods
Objective 2: Minimize the number of

recommended methods.

!

Best sequence of
methods to inspect

Figure 1: Approach Overview

o0 e Intelligent Bug Report Localization
File Settings About Help Exit

Bug Report: /Users/r: /D workspace/ t/ tMethod/A...

Project Code: /Users/ralmhana/Documents/workspace /Aspectj

Bug Description:
When the program below is run, it produces a eption... java.lang.| eption at
A2.ajcSaround$SA2$3b6proceed(CflowCycles.java) at A2.ajc$around$A2S3b6_aroundBody3(CflowCycles java:35) at
Target.run(CflowCycles.java:24) at CflowCycles.run_aroundBody4(CflowCycles.java:8) at
CflowCycles.main_aroundBody6(CflowCycles.java:24) at CflowCycles.main(CflowCycles.java:24) ---(in
new/CflowCycles java and in ajcTestsFailing.xml) import org.aspectj.testing.Tester; /** @testcase cflow cycles in

Search for Classes

Classes List Class Content

BeelAdvice java I
BuildArgParser.java

* Copyright (c) 2002 Palo Alto Research Center, Incorporated (PARC).
* All rights reserved.

* This program and the accompanying materials are made available
*under the terms of the Common Public License v1.0

*which accompanies this distribution and is available at

* http:/ /www.eclipse.org/legal/cpl-v10.html

AjBuild Config.java
ProjectPropertiesAdapter.java
Builder java
CompilerAdapter.java
BrowserProperties.java
|AspectBuildManager.java

«

Search for Methods

Methods List Method Content

getShowinfoMessages
genBuild Config
getProjectSourcePath

I
* Copyright (c) 2002 Palo Alto Research Center, Incorporated (PARC).
* All rights reserved.

* This program and the accompanying materials are made available
* under the terms of the Common Public License v1.0

*which accompanies this distribution and is available at

* http:/ /www.eclipse.org/legal/cpl-v10.html

assembleAll
buildFresh
moduleAliasFor
genBuild Config
addTempFile
InarseQOntion.

* Contributors:
PARC initial implementation

Figure 2: The proposed bugs localization tool.

tween all objectives without degrading any of them. The first
step in NSGA-IL is to create randomly a population P, of in-
dividuals encoded using a specific representation. Then, a
child population Q) is generated from the population of par-
ents P, using genetic operators such as crossover and mu-
tation. Both populations are merged into a population R;
of size N. NSGA-II starts by generating an initial population
based on a specific representation that will be discussed later
in the Solution Representation section of this paper (sec-
tion 3.5.1 and section 3.6.1). This initial population consists

of a list of code fragments from the studied system. Thus,
this population stands of a set of solutions represented as
sequences of code fragments to be evaluated by the fitness
functions for a specific bug report description taken as input.

The whole population that contains N individuals (solu-
tions) is sorted using the dominance principle into several
fronts. The dominance level becomes the basis of a selec-
tion of individual solutions for the next generation. Fronts
are added successively until the parent population P, is
filled with N solutions. When NSGA-II has to cut off a front
F; and select a subset of individual solutions with the same
dominance level, it relies on the crowding distance to make
the selection. This front F; to be split, is sorted in descend-
ing order, and the first (N — | P |) elements of F; are cho-
sen. Then a new population O, is created using selection,
crossover, and mutation. This process repeats until reaching
the last iteration according to stop criteria. The following
three subsections describe more precisely our adaption of
NSGA-II to the model change detection problem.

3.3. Multi-Objective Simulated Annealing
(MOSA)

Multi-objective Simulated Annealing is a local search
heuristic inspired by the concept of annealing in metallurgy
where metal is heated, raising its energy and relieving it of
defects due to its ability to move around more easily [55]. As
its temperature drops, the metal’s energy drops and eventu-
ally it settles in a more stable state and becomes rigid. The
local search algorithm of the Simulated Annealing is very
suitable for exploring reasonable search spaces in terms of
the size like in our case [55].

The first step of the MOSA algorithm is to initialize a
total of five parameters: temperature parameter 7};, cooling
factor a and cooling step N g, final temperature T'g,,,, and
the maximum number of iteration N g, ,.

In MOSA, the mutated solution will be kept and used
for the next iteration if it dominates or is in the same non-
dominating front as the solution from the previous iteration.
To determine the probability that the mutated solution domi-
nated by the solution from the previous iteration will be kept
and used for the next iteration of MOSA, there are several
possible acceptance probability functions that can be uti-
lized.

Since the previous works [50, 55] have noted that the av-
erage cost criteria yields good performance we have utilized
this metric. The average cost criteria simply takes the aver-
age of the differences of each objective value between two
solutions, i and j, over all objectives D, as shown in Equation

Almhana et al.: Preprint submitted to Elsevier

Page 6 of 19

Method-Level Bug Localization Using Hybrid Multi-objective Search

1. The final acceptance probability function used in MOSA
is shown in Equation 2.

|D| N .
cti, = 221 4D =40)
|D|
—abs(c(i.j))
AcceptPrOb([,j, temp) = temp (2)

Where temp is the current temperature and c; (i) is the
objective value for solution i. As explained in the next sec-
tions, MOSA will be used at the method level of our bug
localization approach in order to recommend the most rele-
vant methods of the classes identified by the first step of our
approach based on NSGA-IL.

3.4. Fitness Functions

Both steps of our approach use two main fitness func-
tions that are applied at the class level (global search) and
the method level (local search). The first objective consists
of the size of the solution which corresponds to the num-
ber of recommended classes or methods. The second ob-
jective of correctness is defined as the average of two func-
tions: lexical-based similarity (LS) and history-based simi-
larity (HS). Thus, we formally define this function as:

_LS+HS

> 3)

S

The lexical-based similarity (LS) consists of an average
of two functions. The first function is based on a cosine sim-
ilarity [56] between the description of a bug report and the
source code while the second one checks the similarity be-
tween the description of a bug report and the API documen-
tation. We used the whole content of a source code file (the
code and comments). The vocabulary was extracted from
the names of variables, classes, methods, parameters, types,
etc. We used the Camel Case Splitter to perform the Tok-
enization for prepossessing the identifiers [57].

During the tokenization process, we used a standard in-
formation retrieval stop words to eliminate irrelevant infor-
mation such as punctuation, numbers, etc. In addition, the
words are reduced to their stem based on a Porter Stemmer.
This operation reduces the deviation between related words
such as "designing" and "designer" to the same stem "de-
sign". Then, the cosine similarity measure is used to com-
pare between the description of a bug report and the source
code (classes or methods).

Equation 4 calculates the cosine similarity between two
vectors. Each actor is represented as an n dimensional vec-
tor, where each dimension corresponds to a vocabulary term.
The cosine of the angle between two vectors is considered as
an indicator of similarity. Using cosine similarity, the con-

ceptual similarity between two vectors c¢; and ¢, is deter-
mined as follows:

Sim(er. e .5 .0
m C1,02 = COS CI,C2 =T —
llerfl > [fe21l
_ Z:.':l(w[’l X wi’z) c [0, 1] (4)

\/Z:’zl(wi,l)z X Y (i)

where ¢| = (w) i, ..., w, 1) is the term vector correspond-
ing to actor ¢; and ¢; = (w5, ..., W,,) is the term vector
corresponding to ¢,. The weights w; ; is computed using in-
formation retrieval based techniques such as the Term Fre-
quency - Inverse Term Frequency (TF-IDF) method.

The second component of the correctness objective is the
history-based similarity. This measure is an average of three
functions. The first function counts the number of times that
a code snippet (i.e. classes or methods) was fixed to elim-
inate bugs based on the history of bug reports. In fact, a
source code that was fixed several times has a high proba-
bility of being buggy and includes new bugs. Formally, this
function will be normalized between [0,1] and defined as:

E;S:fe(s) NbFixed Bugs(report, C;)

H, = S)
Size(S) X Max(NbFixed Bugs(report, C;))

Where S is a solution containing a number of recom-
mended classes S’ = {c|, ¢y, ..., Cgiz(sy }- The second func-
tion checks if a code snippet (i.e. classes or methods) was
recently changed or fixed. In fact, a source code that was
modified recently has a higher probability of containing a
bug. Thus, this function compares between the date of the
bug report and the last date where the source code was mod-
ified. If a suggested code snippet was modified on the same
day of the bug report then the value of this function is 1. We
define this normalized function, normalized in the range of
[0,1] as following:

ZSize(S) 1
i=1 report.data—last(report,c;)+1 6)

Size(S)

H2=

The third function evaluates the consistency between the
recommended source code based on previous bug reports.
The code snippets that are recommended together for simi-
lar previous bug reports have a high probability to include a
bug evolving most of them. To this end, this function cal-
culates the cardinality, Cbr, of the largest intersection set of
code snippets (i.e. classes or methods) between the solu-
tion S and the sets of code snippets (i.e. classes or methods)
recommended for each of previous bug reports. Then, this
measure is normalized between [0,1] and defined as follows:

Cbr

H; = Size(S) 7

Almhana et al.: Preprint submitted to Elsevier

Page 7 of 19

Method-Level Bug Localization Using Hybrid Multi-objective Search

Bug ID: 101751

Commit Summary: Bug 101751 Enhance IImagehandler interface to
allow full customization of image handling mechanism

Bug Description: BIRT currently stores temp chart/image into a
directory that the viewer provides. It assumes that the image can be
accessed then as a static resource, bypassing the application server. This
is achieved by generating chart/image URL that points to the image
directly. In a WAR deployment environment, the image directory can no
longer be specified under the web-application, because the web app
installation directory can not always be found. The modified mechanism
is to have the image directory as a hard-coded directory, instead of
retrieved by getRealPath() call now. Because the images are no longer
stored in the web app, they may not be accessible directly through URL
without engine's help. The proposed solution is to enhance
ImageHandler, so that it not only stored image, but returns image too.
This way, the web application (viewer) could set the image handler, the
engine writes the images, then the viewer, given a reference to the imahe

handler, could call the get functions to retrieve images and send back to
client based on the URL. [ImageHandler therefore needs to be
enhanced. So do the default image handler implementations.

Figure 3: BIRT Bug Report Example (ID 101751)

3.5. Class-Level Solution Approach
3.5.1. Solution Representation

To represent a candidate solution (individual), we used
a vector representation. Each dimension of the vector repre-
sents a class to recommend for a specific bug report. Thus,
a solution is defined as a sequence of classes to recommend
for inspection by the developer to locate the bug.

When created, the order of recommended classes corre-
sponds to their positions in the vector. The classes to recom-
mend are dependent since a bug can be located in different
classes. In addition, the goal is to recommend a minimum
set of classes while maximizing the correctness objective.

For instance, A solution to find possible relevant classes
for the bug report of Figure 3, extracted from our experi-
ments, that shows an example of a bug report from BIRT
project (ID 101751) is a vector of several ranked classes to
be inspected. This bug report describes a defect in the image
handling mechanism. The solution consists of a sequence of
classes to inspect extracted from the BIRT project.

3.5.2. Fitness Functions

The first lexical similarity function is defined as the sum
of the cosine similarity scores between a description of a bug
report and the source code of each of the suggested classes
divided by the total number of recommended classes. As
described in Figures 4 and 5, the description of the bug re-
port example includes several similar words with one of the
recommended classes to inspect, the class HTMLServerim-
ageHandler. Thus, the cosine similarity function applied be-
tween the source code of that class and the description of the
bug report will detect such similarities. However, using only
this similarity function may not be enough.

The text of a bug report is expressed in a natural lan-
guage; however, a large part of the content of source code is
described in a programming language (except comments).
Thus, the similarity score between a bug report description
and a source code can be low when there is not enough com-

public class HTMLServerImageHandler implements IHTMLImageHandler

t protected Logger log = Logger.getlLogger(HTMLServerImageHandler.class.getName());
private static int count = 0;
private static HashMap map = new HashMap();

public HTMLServerImageHandler()
= ——

public String onDesignImage(IImage image, Object context)
{&=3} —_—

public String onDocImage(IImage image, Object context)
{&=

public String onURLImage(IImage image, Object context)
{&=3}

public String onCustomImage(IImage image, Object context)
= —

protected String createUniqueFileName(String imageDir, String prefix, String postfix)
{&=3}

protected String createUniqueFileName(String imageDir, String prefix)

=

public String onFileImage(IImage image, Object context)
{3 ——

protected String handleImage(IImage image, Object context, String prefix, boolean needMap)
=

protected String getImageMapID(IImage image)
{&=3}

Figure 4: A code fragment from the class HTMLServerlmage-
Handler

org.eclipse.birt.report.engine.api

Interface IHTMLImageHandler

All Known Implementing Classes:

HTMLCompletelmageHandler, HTMLImageHandler, HTMLServerimageHandler

public interface IHTMLImageHandler

Defines the image handler interface for use in HTML format

Figure 5: API Specification of the interface IHTMLImageHan-
dler

ments in the code, therefore we added a new similarity func-
tion between the bug reports and the APIs description.

The second lexical function is based on the use of cosine
similarity between the bug report description and the API
specification of each method of a recommended buggy class.
Thus, it is defined as the sum of the maximum of the cosine
similarity scores between a description of a bug report and
each of the methods composing the suggested class divided
by the total number of recommended classes. Figure 5 shows
the API specification of the IHTMLImageHandler interface
that includes different terms such as image and handler that
also exists in the bug report description of Figure 4. Thus,
the lexical similarity between the API specification and the
description of a bug report may also help to better identify
relevant buggy classes.

In addition to lexical functions, we also add another com-
ponent to represent the historical measure which composes
of three functions. The first function counts the number of
times a particular class was fixed. Normally, the more times
developers make changes in a class, the more defects could

Almhana et al.: Preprint submitted to Elsevier

Page 8 of 19

Method-Level Bug Localization Using Hybrid Multi-objective Search

I;I:I(e;fzcommits reported on the same file (HTMLServerlmageHander) for Birt Project
Bug# Commit Description Date
Bug 243553 HTMLServerlmageHander returns wrong ImageUrl when using HTMLRenderOption Aug 2008
Bug 101751 Enhance lImagehandler interface to allow full customization of birt image handling mechanism July 2005
Bug 200187 Deprecated HTMLServerlmageHandler methods are not marked as deprecated July 2007

onCustomimage handlelmage onDesignimage

Figure 6: A simplified method-level solution representation

be introduced in this particular file in the future. The second
history-based function is to measure how recent a particular
class has been changed because making some changes to-
day might cause some defects to happen tomorrow. The last
function in this category is to evaluate the consistency be-
tween what we recommend in terms of classes to what has
been touched by the developers in the past to fix a particular
defect. Table 2 shows a list of commits reported on the same
file in Figure 4, we use the history of bug reports to find the
similarity in the description of several commits/bug reports
and therefore find the classes or methods that were fixed in
the past in order to build our solution for the current reported
bug.

3.6. Method-Level Solution Approach
3.6.1. Solution Representation

We used a vector of elements to represent a candidate
solution, each element represents a method along with its
class name in order to recommend for a given bug. Thus, a
solution is defined as a sequence of methods to recommend
for inspection by the developer to locate the bug. The rec-
ommended methods are sorted and ranked in their vector to
represent their degree of importance to be reviewed by the
developers. The methods to recommend are dependent since
a bug can be located in different methods among different
classes while maintaining the balance between minimizing
the set of methods to recommend and maximizing the value
of the correctness objective.

Figure 6 shows a simplified solution generated to find
possible relevant methods for the bug report of Figure 3 ex-
tracted from the BIRT project (ID 101751).

3.6.2. Fitness Functions

We adapted the fitness functions defined at the class level
to calculate the new method level measures. Lexical simi-
larity functions are used to weigh the similarity between the
source code of a suggested method from one side or the de-
scription of a bug report and the API specification of each
method from the other side. As highlighted in Figure 7, the
description of the bug report includes a few keywords that al-

protected String handleImage(IImage image, Object context, String prefix, boolean needMap)
(— —
String mapID = null;
if (needMap)
{
mapID = getImageMapID(image);
if (map. containskey (mapID))
{
return (String)map.get(mapID);
}
}
String ret = null;
if (context != null
&& (context instanceof HTMLRenderContext))
{
HTMLRenderContext myContext = (HTMLRenderContext) context;
String imaEeURL = myContext.getBaseImageURL();
String imageDir = myContext.getImageDirectory();
Al(xmam || imageURL.length()==0
|| imageDir==null || imageDir.length()==0)
{
log.log(Level.SEVERE, "imageURL or ImageDIR is not set!"); //$NON-NLS-1$
return null;

}

String fileName;
File file;

Figure 7: A code fragment from the method handlelmage

ready exist in the handlelmage method. Therefore, the sim-
ilarity measure between the source code of that method and
the description of the bug report is high. History-based fit-
ness functions are used on a particular method by looking at
its recently applied changes; along with the consistency be-
tween our recommended methods to previously fixed meth-
ods of similar bugs in the past.

4. Evaluation

In order to evaluate our approach for recommending rel-
evant methods to inspect for bug reports, we conducted a set
of experiments based on different versions of 6 open source
systems listed in Table 3. Each experiment is repeated 30
times, and the obtained results are subsequently statistically
analyzed. Our aim is to compare our hybrid multi-objective
approach with a variety of existing approaches:

e Approaches not based on heuristic search such as [7,
16, 17, 16] at the class and methods level.

e Our previous multi-objective work [12], a one step
multi-objective formulation based on NSGA-II to iden-
tify relevant classes

e A mono-objective formulation.

Almhana et al.: Preprint submitted to Elsevier

Page 9 of 19

Method-Level Bug Localization Using Hybrid Multi-objective Search

Table 3
Studied Projects
Project # bugs Time # API # files in # # fixed # fixed
the project methods in files/- methods
(average the project classes per per bug
per (median) bug report report
version) (median) (median)
Eclipse 6495 10/2001- 1314 3454 20582 2 2
ul 01/2014
Birt 4178 06,/2005- 957 6841 57329 1 3
12/2013
JDT 6274 10/2001- 1329 8184 30240 2 2
01/2014
AspectJ 593 03/2002- 54 4439 21346 2 2
01/2014
Tomcat 1056 07/2002- 389 1552 17970 1 2
01/2014
SWT 4151 02/2002- 161 2056 28355 3 5
01/2014

In this section, we present our research questions followed
by experimental settings and parameters. Finally, we discuss
our results for each of those research questions.

4.1. Research Questions

In our study, we assess the performance of our approach
by finding out whether it could identify the most relevant
classes and methods to inspect for bug reports. Our study
aims at addressing the following research questions outlined
below. We also explain how our experiments are designed
to address these questions. The main question to answer is
to what extent the proposed approach can propose meaning-
ful bug localization solutions based on the description of a
bug report? To this end, we defined the following research
questions:

o RQI. (Effectiveness) To what extent can the proposed
approach identify relevant methods to localize bugs
based on bug reports description?

e RQ2. (Comparison to search techniques) How does
the proposed hybrid approach performs comparing to
our previous multi-objective work [12], a one step multi-
objective formulation based on NSGA-II to identify
relevant methods, random search, and a mono-objective
formulation?

e RQ3. (Comparison to state-of-the-art) How does our
approach perform compared to existing bugs localiza-
tion techniques not based on heuristic search?

To answer RQ1, we validate the proposed multi-objective
technique on six medium to large-size open-source systems,
as detailed in the next section, to evaluate the correctness of
the recommended methods to inspect for a bug report. To
this end, we used the following evaluation metrics:

e Precision@Kk is the fraction of two components. The
numerator component is the number of correct recom-
mended methods in the top k of recommended meth-
ods (or files) in the solution. The denominator com-
ponent is the minimum number of methods (or files),
between k and the number of recommended method-
s/files to inspect in the ranked recommendations list.

e Recall@k is the fraction of two components. The nu-
merator component is the number of correct recom-
mended methods in the top k of recommended meth-
ods (or files) in the solution. The denominator compo-
nent is the total number of expected methods (or files)
to recommend that contain the bug.

e Accuracy @k measures the percentage of bug reports
for which at least one correct recommendation was
provided in the top k ranked methods (or files).

To answer RQ2, we compared, using the above metrics,
the performance of our hybrid multi-objective approach,
called HMOA, with our previous multi-objective work [12],
a one step multi-objective formulation based on NSGA-II to
identify relevant methods (called hNSGA-II), random search
and a mono-objective formulation, based on a Genetic Al-
gorithm, aggregating all the objectives into one objective
with equal weight. We note that hNSGA-II is using only
NSGA-II using the same fitness functions but applied di-
rectly at the methods level (minimizing the number of rec-
ommended methods and maximizing the relevance of rec-
ommended methods). Furthermore, we implemented three
mono-objective formulations: 1.with an equal aggregation
of both objectives (GA); 2. a mono-objective algorithm with
the only objective of lexical similarity (LS); and 3. a mono-
objective algorithm with the only objective of history simi-

Almhana et al.: Preprint submitted to Elsevier

Page 10 of 19

Method-Level Bug Localization Using Hybrid Multi-objective Search

larity (HS). Random search and the mono-objective formu-
lation are applied for both levels (class and method levels)
similar to our approach so we can ensure a fair comparison.
hNSGA-II is used to show the value of using a two levels
approach.

If Random Search outperforms a guided search method
thus, we can conclude that our problem formulation is not
adequate. It is important also to determine if our objectives
are conflicting and outperform a mono-objective technique.
The comparison between a multi-objective technique with
mono-objective ones is not straightforward. The first one re-
turns a set of non-dominated solutions while the second one
returns a single optimal solution. To this end, we choose
the nearest solution to the Knee point [13] (i.e., the vector
composed of the best objective values among the population
members) as a candidate solution to be compared with the
single solution returned by the mono-objective algorithm.
We did not invent the knee point method and we used it as
recommended by the current literature [58, 59, 60]. The
two common ways are the use of the reference point and
the knee point. The definition of the reference point (best
region of the Pareto front) can be subjective for most real-
world problems since it depends on the preferences [58]. The
knee point represents the maximum trade-off between the
objectives thus it is reasonable to compare it with a mono-
objective solution with equal weights of the different objec-
tives aggregated in one fitness function. The fact that we are
comparing a mono-objective formulation with equal weights
to a knee point (representing the maximum possible trade-
off) ensures a fair comparison.

The hNSGA-II algorithm identifies relevant methods for
bug reports using the same fitness functions, applied at the
methods level, of the proposed approach but only using one
step. Thus, the solutions of hNSGA-II are a sequence of
methods that are generated and evolved using NSGA-II. The
comparison with hNSGA-II is important to confirm the rel-
evance of using a hybrid approach combining both a global
and local search algorithms. In comparison with our pre-
vious class level work [12], we considered the files of the
methods to ensure a fair comparison. This comparison can
evaluate the impact of adding the MOSA component on the
quality of the results especially in terms of finding the best
ranking of the classes/files.

To answer RQ3, we compared our multi-objective ap-
proach to different existing techniques not based on heuristic
search:

e BugScout [7] identifies relevant classes based on the
use of Latent Dirichlet Allocation measure [27].

e Buglocator [17] ranks classes using both textual and
structural similarity.

e Learning-to-rank (LRank) [16] technique ranks meth-
ods using a machine learning technique to learn from
the history of previous bug reports. While this tech-
nique can be adopted to both class and methods level
like our approach, we configured the implementation

to recommend methods as output. Also, we compared
our work with two additional baselines. The first one
is only based on the use of the lexical measure (LS) to
rank classes and the second one is based on the only
use of the history measure (HS). These two baselines
may justify or not the need of considering complemen-
tary information from both the lexical and history sim-
ilarities in our multi-objective formulation.

We considered the files of the methods to ensure a fair com-
parison with class level recommendation tools (BugScout,
Buglocator and our previous work [12]) and we considered
comparisons of the results at the methods level with [16].
Thus, we have two categories of comparison: 1) the class-
level approaches are compared to our approach using the
evaluation metrics applied at the files (precision, recall and
accuracy); and 2) the methods-level approaches are com-
pared to our approach using the evaluation metrics applied
at the methods (precision, recall and accuracy).

4.2. Software Projects and Experimental Setting

As described in Table 3, we extended a benchmark data
sets for six open-source systems [15, 16] from the class to
the methods level and we are making this new benchmark
available to the community [19]. The data is a spreadsheet
where rows are bugs and columns are attributes of the bug.
Columns are bug id, bug description, bug summary/commit,
bug commit id, bug resolved date. Besides, we added two
more columns, the first column contains a list of classes that
have been changed in order to resolve the bug, and the second
contains a list of methods that have been fixed. Both of those
columns (classes list and method list) have been generated
using Git (version code system) which provides us the ability
to extract a list of files or methods that have been changed
in each commit along with date and developer (committer).
The whole data has been generated using data from Git or
Bugzilla (bug tracking system).

o Eclipse Ul is the user interface of the Eclipse devel-
opment framework.

e Tomcat implements several Java EE specifications.

e Aspect] is an aspect-oriented programming (AOP) ex-
tension created for the Java programming language.

e Birt provides reporting and business intelligence ca-
pabilities.

e SWT is a graphical widget toolkit.
e JDT provides a set of tool plug-ins for Eclipse.

In Table 3 shows the different statistics of the analyzed
systems including the time range of the bug reports, the num-
ber of bug reports, the number of classes and methods in
a project, the number of APIs, the number of fixed classes
per bug report, and the number of fixed methods per bug
report. The total number of collected bug reports and asso-
ciated classes and methods is more than 22,000 bug reports

Almhana et al.: Preprint submitted to Elsevier

Page 11 of 19

Method-Level Bug Localization Using Hybrid Multi-objective Search

for the six open source systems. All these projects are us-
ing BugZilla tracking system and GIT as a version control
system. The ground truth used in our evaluation is the bug
location and its respective bug report. To avoid using a fixed
version of the source code, we associated a before-fixed ver-
sion of the source code to each bug report. Therefore, for
each bug report in our evaluation, we used the version of the
source code just before the fix was committed. Based on the
collected data, we created two sets: one for the training data
and the other for the test data. The bug reports for each sys-
tem were sorted chronologically based on the time dimen-
sion. The sorted bug reports are then split into 10 folds with
equal sizes, where fold; contains the most oldest bug reports
and the last fold, fold;,, contains the recent ones. In addi-
tion, the oldest fold is split into 70% training (history of bug
reports) and 30% validation. The approach is trained on fold
i + 1 and tested on fold;, for all i from 1 to 10. The best
recommended solution is then compared with the expected
solution of classes and methods that contain the bug. Thus,
fold; contains the oldest bug reports whereas fold,, contains
the latest bug reports. Since the folds are arranged chrono-
logically, this means that the system is always trained on the
most recent bug reports with respect to the testing fold.

4.3. Parameters Tuning and Statistical Tests

Since metaheuristic algorithms are stochastic optimiz-
ers, they can provide different results for the same problem
instance from one run to another.

We used the Wilcoxon rank sum test [61] in a pairwise
fashion in order to detect significant performance differences
between the algorithms (HMOA vs each of the competitors)
under comparison based on 30 independent runs. BugScout
and BugLocator are both deterministic thus we did not per-
form 30 independent runs.The Wilcoxon test allows testing
the null hypothesis HO that states that both algorithms me-
dians’ values for a particular metric are not statistically dif-
ferent against H1 which states the opposite. The Wilcoxon
test does not require that the data sets follow a normal dis-
tribution since it operates on values’ ranks instead of op-
erating on the values themselves. Since we are comparing
more than two different algorithms, we performed several
pairwise comparisons based on Wilcoxon test to detect the
statistical difference in terms of performance. To compare
two algorithms based on a particular metric, we record the
obtained metric’s values for both algorithms over 30 runs.
For deterministic techniques, we considered one value of
each metric on each system. After that, we compute the met-
ric’s median value for each algorithm. Besides, we executed
the Wilcoxon test with a 95% confidence level (« = 5%) on
the recorded metric’s values using the Wilcoxon MATLAB
routine. If the returned p-value is less than 0.05 then we re-
ject HO and we can state that one algorithm outperforms the
other, otherwise we cannot say anything in terms of perfor-
mance difference between the two algorithms.

The Wilcoxon test allows verifying whether the results
are statistically different or not. However, it does not give
any idea about the difference in magnitude. To this end, we

used the Vargha and Delaney’s A statistics which is a non-
parametric effect size measure. In our context, given the dif-
ferent performance metrics (such as Precision and Recall),
the A statistics measures the probability that running an al-
gorithm B1 (HMOA) yields better performance than running
another algorithm B2 (such as GA). If the two algorithms are
equivalent, then A = 0.5.

An often-omitted aspect in metaheuristic search is the
tuning of algorithm parameters. In fact, the parameter set-
ting significantly influences the performance of a search al-
gorithm on a particular problem. For this reason, for each
search algorithm and each system, we performed a set of ex-
periments using several population sizes: 10, 20, 30, 40 and
50. The stopping criterion was set to 100,000 fitness evalua-
tions for all search algorithms to ensure fairness of compari-
son. We used a high number of evaluations as a stopping cri-
terion since our approach requires multiple objectives. Each
algorithm was executed 30 times with each configuration
and then the comparison between the configurations was per-
formed based on different metrics described previously us-
ing the Wilcoxon test. The other parameters values were
fixed by trial and error and are as follows: (1) crossover prob-
ability = 0.4; mutation probability = 0.3 where the probabil-
ity of gene modification is 0.1. In fact, we decided to reduce
the diversity of the generated solutions at each iteration since
a local search exploration will be executed as well as a sec-
ond step.

MOSA was performed with a starting temperature of
0.0002 and an alpha value of 0.99995. The starting temper-
ature and alpha values were chosen because they yielded the
best results in empirical preliminary tests. All probability
distributions used by the search process (e.g., to determine
the type of mutation to execute or code fragments to select)
were such that each discrete possibility had an equal chance
of being selected.

4.4. Results
4.4.1. Results for RQ1

The results of Table 4 and Figures 8-13 confirm the ef-
fectiveness of our hybrid multi-objective approach (HMOA)
to identify the most relevant classes and methods for bug re-
ports that include the bugs on the 6 open source systems. Ta-
ble 4 shows the average precision@k results of our HMOA
technique on the different six systems, with k ranging from
5 to 20. For example, most of the recommended methods
to inspect in the top 5 (k=5) are relevant with a precision of
83%. The lowest precision is around 71% for k=20 which
still could be considered acceptable due to the low granular-
ity/abstraction level (methods). In terms of recall, Table 4
confirms that the majority of the expected methods to rec-
ommend are located in the top 20 (k=20) with an average
recall score of 83%. An average of more than 73% of meth-
ods recommended in the top 5 covers the expected buggy
methods. The average accuracy @k results on the different
six systems are described in Table 4 showing that an aver-
age of 67%, 74%, 86%, and 91% are achieved for k = 5, 10,
15, and 20 respectively.

Almhana et al.: Preprint submitted to Elsevier

Page 12 of 19

Method-Level Bug Localization Using Hybrid Multi-objective Search

Precision@10

Eclips= Ul Tomeat Aspect)

-
a

@
8

a8

.
5

8

=
5

s

WNSGAYl WHMOA mBugScout m Buglocator

Figure 8: Median Precision@10 at the class level on the differ-
ent systems for 30 independent runs.

Recal @10
100

@ g
£

0

] || |

Eclps Ul Tomeat Aspect)

o

Q

8

=
&

]

8
8

B

WNSGAHl WHMOA mBugScout mBuglocator

Figure 9: Median Recall@10 at the class level on the different
systems for 30 independent runs.

Figures 11-13 summarize the results of the precision@10,

recall@ 10 and accuracy @ 10 for each of the studied systems.
The obtained results clearly show that most of the buggy
methods were recommended correctly by our hybrid multi-
objective approach in the top 10 with a minimum precision
of 82% for Aspect], a minimum recall of 84% for Eclipse
and a minimum accuracy of 81% for Eclipse as well. Thus,
we noticed that our technique does not have a bias towards
the evaluated system. As described in Figures 11-13, in all
systems, we had almost similar average scores of precision,
recall, and accuracy. All these results based on the differ-
ent measures were statistically significant on 30 independent
runs using the Wilcoxon test with a 95% confidence level (a
< 5%) as detailed in Table 6.

To answer RQ1, the obtained results on the six open
source systems using the different evaluation metrics of pre-
cision, recall, and accuracy clearly validate the hypotheses
that our hybrid multi-objective approach can recommend ef-
ficiently relevant buggy methods to inspect for each bug re-
port.

4.4.2. Results for RQ2

Concerning RQ2, we have two categories of comparison.
The first category is dedicated to the comparison of HMOA
with other method level approaches (LS, LRank, HS, GA,
RS, hNSGA-II) to our approach. The second category is re-

Accuracy@10
100

%0
80
| | | | |

Eclps= Ul Tomeat Aspect!

@
3

&

&
&

&

=
]

5

mNSGAI WHMOA mBugScout m Buglocator

Figure 10: Median Accuracy@10 at the class level on the dif-
ferent systems for 30 independent runs.

Precision@10
100

30

80

&

0

ANSGA-II HMOA Lrank

2

B
&

5
g

5

mEclpsUl mTomcat mAspect! mBit mSWT miDT

Figure 11: Median Precision@10 at the methods level on the
different systems for 30 independent runs.

Recall@10

100

30

20

70

60

50

40

30

20

m o
0

hNSGA-II HMOA Lrank

mEclpse Ul mTomcat mAspect) mBit mSWT miOT

Figure 12: Median Recall@10 at the methods level on the
different systems for 30 independent runs.

lated to the comparison of HMOA with our previous multi-
objective work [12] for bugs localization at the class level.
Thus, the comparison in the second category is performed at
the class level (similar to RQ3).

Tables 4-5 and Figures 8-10 confirm that HMOA is bet-
ter, in average, than random search, the one-step multi-objective
methods level formulation (h(NSGA-II), and the three mono-
objective formulations (LS, HS and GA) based on the three
metrics of precision, recall and accuracy on all the 6 systems.

Almhana et al.: Preprint submitted to Elsevier

Page 13 of 19

Method-Level Bug Localization Using Hybrid Multi-objective Search

;\r/laelzil;;: Precision@k, Recall@k and Accuracy@k on 30 independent runs at the methods
level.
K Precision @ K
hNSGA-II HMOA LR LS HS RS GA
5 76 83 72 62 66 32 69
10 71 79 68 54 58 26 71
15 68 76 61 51 54 28 63
20 64 71 52 44 49 21 54
K Recall @ K
hNSGA-II HMOA LR LS HS RS GA
69 73 61 49 51 21 58
72 78 67 54 56 24 63
75 81 69 59 62 27 71
79 83 72 63 66 21 74
K Accuracy @ K
hNSGA-II HMOA LR LS HS RS GA
5 64 67 58 39 34 23 51
10 69 74 64 52 48 27 57
15 81 86 77 61 57 29 63
20 86 91 83 68 66 33 72

Alggu racy@10

-

50]
30 |

20 [] R
10 H |

hNSGA- HMOA

Ls HS

mEclipse Ul mTomeat mAspect]

Lrank

RS GA
WT mJDT

mEBit mSW

Figure 13: Median Accuracy@10 at the methods level on the
different systems for 30 independent runs.

The average accuracy, precision, and recall values of ran-
dom search (RS) on the six systems are lower than 32% as
described in Table 4. This can be explained by the huge
search space to explore to identify the best order of meth-
ods to inspect for bugs localization. The performance of the
three mono-objective algorithms was much better than ran-
dom search but lower than the multi-objective formulations.
The aggregation of both objectives into one objective gener-
ates better results on all the six systems than the two other
algorithms considering each objective separately. Thus, an

interesting observation is the clear complementary between
the history-based similarity function and the lexical-based
measure. In fact, we found that the buggy methods that are
not detected by one of the two algorithms were identified
by the other algorithm. The average precision, recall, and
accuracy of each of the two algorithms (LH and HS) was
between 61% and 73% but the aggregation of both objec-
tives into one in our multi-objective formulations improve a
lot the obtained results. In addition, since the three multi-
objective formulations (NSGA-II, MOHA, and hNSGA-II)
outperform the mono-objective GA then it is clear that the
two objectives of correctness/relevance and the number of
recommended methods are conflicting.

Table 5 confirms also the outperformance of our hybrid
multi-objective algorithm comparing to the remaining multi-
objective formulations (hNSGA-II and NSGA-II). It is clear
that HMOA results are better than hNSGA-II in terms of
precision, recall and accuracy. This may confirm that the
use of MOSA as a local search to identify methods helped
for a better exploration of the large space of possible method
comparing to the one-step NSGA-II approach. Furthermore,
the results of Figures 8-10 show that both HMOA have bet-
ter precision, recall and accuracy, on average, than previous
work [12]. Thus, it is also clear that adaptation of the meth-
ods level fitness functions is more adequate than our previous

Almhana et al.: Preprint submitted to Elsevier

Page 14 of 19

Method-Level Bug Localization Using Hybrid Multi-objective Search

;\r/laelzil;;r? Precision@k, Recall@k and Accuracy@k on 30 independent runs at the class/files
level.
K Precision @ K
NSGA-II HMOA Bug Scout Bug Locator
5 89 100 76 78
10 82 92 71 74
15 74 84 63 69
20 68 81 48 51
K Recall @ K
NSGA-II HMOA Bug Scout Bug Locator
72 84 59 62
81 86 64 67
87 89 69 72
94 100 74 80
K Accuracy @ K
NSGA-II HMOA Bug Scout Bug Locator
5 68 83 41 44
10 86 86 62 69
15 94 97 74 78
20 97 100 79 82

work to localize bugs and their impact on the ranking of the
classes to be explored by the developers in a positive way.

All these results were statistically significant on 30 inde-
pendent runs using the Wilcoxon test with a 95% confidence
level (@ < 5%) as described in Table 6. We have also found
the following results of the Vargha Delaney A |, statistic : a)
On large and medium scale systems (Birt, JDT, Eclipse U,
and Aspect]) HMOA is better than all the other algorithms
based on all the performance metrics with an A effect size
higher than 0.89; b) On small scale systems (Tomcat, SWT),
HMOA is better than all the other algorithms with an A ef-
fect size higher than 0.91.

We conclude that there is empirical evidence that our hy-
brid multi-objective formulation surpasses the performance
of random search and other search-based approaches thus
our formulation is adequate (this answers RQ2).

4.4.3. Results for RQ3

Since it is not sufficient to compare our approach with
only search-based algorithms, we compared the performance
of NSGA-II with three different bug localization techniques
not based on heuristic search [7, 16, 17]. Similar to the com-
parison with NSGA-II, we used class-level comparison mea-
sures for [7, 17] and method-level comparison for [16]. Ta-
bles 4 and 5, and Figures 8-13 present the precision @k, re-
call@k and accuracy @k results for the 3 implemented meth-

ods, with k ranging from 5 to 20. HMOA achieves better
results, on average, than the other three methods on all six
projects. For example, our approach achieved, on average,
Precision@k of 92%, 87%, 79% and 76% are achieved for
k=5, 10, 15 and 20 respectively as described in Table 5. In
comparison, Buglocator achieved an average Precision@k
of 68%. BugScout and Lrank achieved an average Preci-
sion@k of 66% and 72%, respectively. Similar observations
are also valid for the recall@k and accuracy @k.

Based on the results of Figures 11-13 Birt and Tomcat
are two projects where Lrank performs close to the HMOA
approach. For many bug reports in Birt, most of the buggy
methods are those that have been frequently fixed in previous
bug reports which explain the relatively high performance
obtained by Lrank and HMOA. Since the bug fixing informa-
tion is exploited by both the NSGA-II approach and Lrank,
it is expected that they obtain the best performance results.

To answer RQ3, the obtained results on the six open
source systems using the different evaluation metrics of pre-
cision, recall and accuracy clearly validate the hypotheses
that our hybrid multi-objective approach outperforms sev-
eral bugs localization techniques not based on heuristic search
both at the method and class levels.

Almhana et al.: Preprint submitted to Elsevier

Page 15 of 19

Method-Level Bug Localization Using Hybrid Multi-objective Search

Table 6

The Wilcoxon rank sum test results in a pairwise fashion (HMOA vs each of the competi-
tors) to detect significant performance differences between the algorithms under compari-
son using the Precision, Recall and Accuracy measures.

Precision hNSGA-II NSGA-II BugScout Buglocator Lrank LS HS RS GA
Eclipse Ul 0.012 0.024 0.014 0.021 0.032 0.023 0.001 0.003 0.027
Tomcat 0.038 0.013 0.017 0.011 0.017 0.017 0.013 0.012 0.014
AspectJ 0.022 0.024 0.021 0.017 0.037 0.021 0.004 0.017 0.011
Birt 0.016 0.047 0.018 0.003 0.032 0.031 0.012 0.031 0.023
SWT 0.038 0.014 0.022 0.014 0.024 0.011 0.024 0.004 0.014
JDT 0.021 0.035 0.017 0.019 0.017 0.023 0.012 0.014 0.027
Recall hNSGA-Il NSGA-II BugScout Buglocator Lrank LS HS RS GA
Eclipse Ul 0.023 0.020 0.027 0.023 0.027 0.026 0.017 0.002 0.031
Tomcat 0.031 0.017 0.004 0.007 0.032 0.011 0.031 0.012 0.023
AspectJ 0.014 0.019 0.016 0.016 0.018 0.007 0.014 0.006 0.014
Birt 0.022 0.014 0.011 0.012 0.019 0.024 0.022 0.011 0.017
SWT 0.031 0.023 0.016 0.032 0.031 0.016 0.016 0.013 0.023
JDT 0.023 0.011 0.021 0.037 0.043 0.018 0.027 0.014 0.019
Accuracy hNSGA-Il NSGA-Il BugScout Buglocator Lrank LS HS RS GA
Eclipse Ul 0.026 0.032 0.026 0.018 0.034 0.007 0.013 0.024 0.011
Tomcat 0.028 0.017 0.017 0.022 0.021 0.016 0.017 0.008 0.023
AspectJ 0.031 0.024 0.032 0.016 0.038 0.023 0.022 0.013 0.017
Birt 0.017 0.019 0.021 0.024 0.027 0.009 0.031 0.011 0.032
SWT 0.024 0.027 0.019 0.019 0.021 0.017 0.024 0.021 0.037
JDT 0.006 0.021 0.024 0.027 0.013 0.023 0.011 0.017 0.021

5. Discussion

We executed our hybrid multi-objective algorithm on a
desktop computer with CPU Intel(R) Core(TM) i7 3.2 GHz
and 20G RAM. Figure 14 presents the average execution
time of our approach on 30 independent runs for the different
six systems. This average execution time is to parse all bug
reports for single system and generate the recommended so-
lutions. We have also compared the HMOA execution time
to our previous work based on NSGA-II to evaluate the cost
of adding the new MOSA component to localize bugs at the
method level. The average execution time on the different
systems was around 23 minutes. The highest execution time
was observed on the Eclipse system with 28 minutes and the
lowest one was around 19 minutes for Aspect]. We believe
that the execution is reasonable since bug localization is not
a real-time problem. We also found that the execution time
depends on the number of files to parse and the history of
bug reports. Furthermore, the cost of adding the MOSA lo-
cal search is low with an average of 6 minutes comparing
to our previous work based on NSGA-II at the class level.

Furthermore, we compared the execution time between our
approach and hNSGA-II which shows that the local search
based on MOSA is actually faster than applying NSGA-II for
the methods-level search (an average of around 3 mins per
system). In fact, the hNSGA-II formulation is executed at
the methods level which is a much larger search space than
the use of local search on a smaller search space of classes
identified after a number of iterations of NSGA-II at the class
level.

To evaluate the impact of increasing the size of the data
used (history of previous bug reports and changes), we ex-
ecuted a scenario on the JDT project in which we increased
the size of the dataset incrementally fold by fold until we in-
clude all the 9 folds in the dataset. It is clear from Figure
15 that for all the three metrics of Precision@k, Recall @k
and Accuracy @k that increasing the size of the previous bug
reports does not improve all the three metrics. This can be
explained by the fact that recent bug reports and history of
changes are the most important part of the data. The ob-
tained results confirm also that our hybrid multi-objective
approach did not require a large set of data to generate good

Almhana et al.: Preprint submitted to Elsevier

Page 16 of 19

Method-Level Bug Localization Using Hybrid Multi-objective Search

Execution time (mins)

-
25

20

15

1: I I

s

Eclps=U Tomcat Aspect) Bt

swT 1T

mNSGA-Il Execution Time (mins) m HMOA Execution Tme (mins) FNSGA-II Execution Time {mins)

Figure 14: Average execution time (in minutes) of NSGA-II,
hNSGA-II and HMOA, on the different systems for 30 inde-
pendent runs on the different systems

100

Precision/Recall/Accuracy @k, k=10

90 J—
e — e e e

80 —=

70

60

—precision@k

50
Recall@k

40
m— A ccuracy@k

30

20
10

o T T T T T T T T |
g fH#used folds

Figure 15: Impact of the data training size (folds) on the three
evaluation metrics based on the JDT project for the HMOA
algorithm.

results in terms of finding possible buggy methods for bug
reports. One interesting observation from the recall results
is that this measure did not decrease when more bugs reports
are added to the datasets. It could be explained by the fact
that the the history-based part of the fitness function is only
part of the objective, thus the noise introduced by older bug
reports is not very impactful. Futhermore, our approach is
not based on machine learning to learn from all the dataset.
It is based on metaheuristics search guided by fitness func-
tions thus the results are likely less susceptible to noise.

6. Threats to Validity

We explore, in this section, the factors that can bias our
empirical study. These factors can be classified into three
categories: construct internal and external validity. Con-
struct validity concerns the relation between the theory and
the observation. Internal validity concerns possible bias with
the results obtained by our proposal. Finally, external valid-
ity is related to the generalization of observed results outside
the sample instances used in the experiment.

In our experiments, construct validity threats are related
to the absence of similar work that uses search-based tech-
niques for bug localization expect our previous work. For
that reason, we compared our proposal with different mono-
objective formulations to check the need for a multi-objective
approach and a one-level multi-objective formulation to eval-
uate the performance of our hybrid approach. A construct
threat can also be related to the corpus of manually local-
ized bugs for every bug report. A limitation related to our
experiments is the difficulty to set the thresholds for some of
the parameters of Bug Locator. In fact, we used the default
thresholds used by the authors that can have an impact on
the quality of the generated results. Another possible threat
is related to the use of the knee point to compare the mono-
objective search to our approach.

We take into consideration the internal threats to valid-
ity in the use of stochastic algorithms since our experimental
study is performed based on 30 independent simulation runs
for each problem instance, and the obtained results are statis-
tically analyzed by using the statistical test with a 95% con-
fidence level (¢ = 5%). The parameter tuning of the differ-
ent optimization algorithms used in our experiments creates
another internal threat that we need to evaluate in our future
work by additional experiments to evaluate the impact of the
parameters on the quality of the results.

External validity refers to the generalization of our find-
ings. In this study, we performed our experiments on six
different widely-used open-source systems belonging to the
different domains and with different sizes. However, we can-
not assert that our results can be generalized to other appli-
cations, other programming languages, and other practition-
ers.

7. Conclusion and future work

We propose, in this paper, an automated approach to lo-
calize and rank potential relevant methods for bug reports as
an extension of our previous work limited to class level rec-
ommendations. Our approach finds a trade-off between min-
imizing the number of recommended methods and maximiz-
ing the correctness of the proposed solution using a hybrid
multi-objective algorithm. The correctness of the recom-
mended methods is estimated based on the use of the history
of changes and bug-fixing, and the lexical similarity between
the bug report description and the API documentation. Our
approach uses the main steps, the first step finds the best set
of classes satisfying the two conflicting criteria of relevance
and number of classes to recommend using a global search
based on NSGA-II. The second step is to locate the most ap-
propriate methods to inspect, using a local multi-objective
search based on Simulated Annealing (MOSA) from the list
of classes identified in the first step.

The paper presents the results of an empirical study with
an implementation of our hybrid multi-objective approach
based on 22,000 bug reports. The obtained results provide
evidence to support the claim that our proposal is more effi-
cient, on average, than state of the art techniques on 6 open
source systems. As part of our future work, we plan to ex-

Almhana et al.: Preprint submitted to Elsevier

Page 17 of 19

Method-Level Bug Localization Using Hybrid Multi-objective Search

tend our work to consider the severity of the bugs when iden-
tifying relevant files. Furthermore, we are planning to ad-
dress the problem of finding the qualified developers to fix
the bugs based on the outputs of our bug localization ap-
proach. Finally, we will extend our work to handle multiple
bugs reports at the same time and consider the dependency
between them when recommending code fragments to the
developers.

References

(1]

[2]

[3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

B. Bruegge and A. H. Dutoit, Object-Oriented Software Engineering
Using UML, Patterns and Java-(Required). Prentice Hall, 2004, vol.
2004.

T. Zimmermann, R. Premraj, N. Bettenburg, S. Just, A. Schroter, and
C. Weiss, “What makes a good bug report?” [EEE Transactions on
Software Engineering, vol. 36, no. 5, pp. 618-643, 2010.

N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim, “Duplicate
bug reports considered harmful... really?” in Software maintenance,
2008. ICSM 2008. IEEE international conference on. 1EEE, 2008,
pp. 337-345.

M. Fischer, M. Pinzger, and H. Gall, “Analyzing and relating bug re-
port data for feature tracking,” in WCRE, vol. 3, 2003, p. 90.

S. Wang and D. Lo, “Version history, similar report, and structure:
Putting them together for improved bug localization,” in Proceedings
of the 22Nd International Conference on Program Comprehension,
ser. ICPC 2014. New York, NY, USA: ACM, 2014, pp. 53-63.
[Online]. Available: http://doi.acm.org/10.1145/2597008.2597148
C. Sun, D. Lo, X. Wang, J. Jiang, and S.-C. Khoo, “A discriminative
model approach for accurate duplicate bug report retrieval,” in Pro-
ceedings of the 32nd ACM/IEEE International Conference on Soft-
ware Engineering-Volume 1. ACM, 2010, pp. 45-54.

A. T. Nguyen, T. T. Nguyen, J. Al-Kofahi, H. V. Nguyen, and T. N.
Nguyen, “A topic-based approach for narrowing the search space
of buggy files from a bug report,” in Proceedings of the 2011 26th
IEEE/ACM International Conference on Automated Software Engi-
neering. 1EEE Computer Society, 2011, pp. 263-272.

B. Ashok, J. Joy, H. Liang, S. K. Rajamani, G. Srinivasa, and V. Van-
gala, “Debugadvisor: a recommender system for debugging,” in Pro-
ceedings of the the 7th joint meeting of the European software engi-
neering conference and the ACM SIGSOFT symposium on The foun-
dations of software engineering. ACM, 2009, pp. 373-382.

H. Aman, S. Amasaki, T. Yokogawa, and M. Kawahara, “Empirical
study of abnormality in local variables and its application to fault-
prone java method analysis,” Journal of Software: Evolution and Pro-
cess, p. €2220, 2019.

X. Ye, H. Shen, X. Ma, R. Bunescu, and C. Liu, “From word embed-
dings to document similarities for improved information retrieval in
software engineering,” in Proceedings of the 38th international con-
ference on software engineering. ACM, 2016, pp. 404-415.

B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan, “Bug isolation via
remote program sampling,” in ACM Sigplan Notices, vol. 38, no. 5.
ACM, 2003, pp. 141-154.

R. Almhana, W. Mkaouer, M. Kessentini, and A. Ouni, “Recommend-
ing relevant classes for bug reports using multi-objective search,” in
Proceedings of the 31st IEEE/ACM International Conference on Au-
tomated Software Engineering. ACM, 2016, pp. 286-295.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and eli-
tist multiobjective genetic algorithm: Nsga-ii,” IEEE transactions on
evolutionary computation, vol. 6, no. 2, pp. 182-197, 2002.

P. Czyzzak and A. Jaszkiewicz, ‘“Pareto simulated annealing—a meta-
heuristic technique for multiple-objective combinatorial optimiza-
tion,” Journal of Multi-Criteria Decision Analysis, vol. 7, no. 1, pp.
34-47, 1998.

X. Ye, R. Bunescu, and C. Liu, “Learning to rank relevant files for
bug reports using domain knowledge,” in Proceedings of the 22nd

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

ACM SIGSOFT International Symposium on Foundations of Software
Engineering. ACM, 2014, pp. 689-699.

——, “Mapping bug reports to relevant files: A ranking model, a
fine-grained benchmark, and feature evaluation,” IEEE Transactions
on Software Engineering, vol. 42, no. 4, pp. 379-402, 2016.

J. Zhou, H. Zhang, and D. Lo, “Where should the bugs be fixed?-
more accurate information retrieval-based bug localization based on
bug reports,” in Proceedings of the 34th International Conference on
Software Engineering. 1EEE Press, 2012, pp. 14-24.

M. Harman, S. A. Mansouri, and Y. Zhang, “Search-based software
engineering: Trends, techniques and applications,” ACM Computing
Surveys (CSUR), vol. 45, no. 1, p. 11, 2012.

“Methods level data for bugs localization,” http://www-personal.umd.
umich.edu/~marouane/tsedata.zip, accessed: 2018-10-01.

M. Kessentini and A. Ouni, “Detecting android smells using multi-
objective genetic programming,” in 2017 IEEE/ACM 4th Interna-
tional Conference on Mobile Software Engineering and Systems (MO-
BILESoft). 1EEE, 2017, pp. 122-132.

A. Ghannem, G. El Boussaidi, and M. Kessentini, “On the use of de-
sign defect examples to detect model refactoring opportunities,” Soft-
ware Quality Journal, vol. 24, no. 4, pp. 947-965, 2016.

B. Amal, M. Kessentini, S. Bechikh, J. Dea, and L. B. Said, “On
the use of machine learning and search-based software engineering
for ill-defined fitness function: a case study on software refactoring,”
in International Symposium on Search Based Software Engineering.
Springer, Cham, 2014, pp. 31-45.

M. Kessentini, A. Ouni, P. Langer, M. Wimmer, and S. Bechikh,
“Search-based metamodel matching with structural and syntactic
measures,” Journal of Systems and Software, vol. 97, pp. 1-14, 2014.
A. Ghannem, G. El Boussaidi, and M. Kessentini, “Model refactor-
ing using examples: a search-based approach,” Journal of Software:
Evolution and Process, vol. 26, no. 7, pp. 692-713, 2014.

A. Ghannem, M. Kessentini, and G. El Boussaidi, “Detecting model
refactoring opportunities using heuristic search,” in Proceedings of
the 2011 Conference of the Center for Advanced Studies on Collabo-
rative Research, 2011, pp. 175-187.

S. T. Dumais, “Latent semantic analysis,” Annual review of informa-
tion science and technology, vol. 38, no. 1, pp. 188-230, 2004.

D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
Journal of machine Learning research, vol. 3, no. Jan, pp. 993-1022,
2003.

G. Salton, A. Wong, and C.-S. Yang, “A vector space model for au-
tomatic indexing,” Communications of the ACM, vol. 18, no. 11, pp.
613-620, 1975.

C.-P. Wong, Y. Xiong, H. Zhang, D. Hao, L. Zhang, and H. Mei,
“Boosting bug-report-oriented fault localization with segmentation
and stack-trace analysis,” in Software Maintenance and Evolution (IC-
SME), 2014 IEEE International Conference on. 1EEE, 2014, pp.
181-190.

R. K. Saha, M. Lease, S. Khurshid, and D. E. Perry, “Improving
bug localization using structured information retrieval,” in Automated
Software Engineering (ASE), 2013 IEEE/ACM 28th International
Conference on. 1EEE, 2013, pp. 345-355.

R. K. Saha, J. Lawall, S. Khurshid, and D. E. Perry, “On the effective-
ness of information retrieval based bug localization for ¢ programs,”
in Software Maintenance and Evolution (ICSME), 2014 IEEE Inter-
national Conference on. 1EEE, 2014, pp. 161-170.

S. Rao and A. Kak, “Retrieval from software libraries for bug local-
ization: a comparative study of generic and composite text models,”
in Proceedings of the 8th Working Conference on Mining Software
Repositories. ACM, 2011, pp. 43-52.

S. Wang and D. Lo, “Version history, similar report, and structure:
Putting them together for improved bug localization,” in Proceedings
of the 22nd International Conference on Program Comprehension.
ACM, 2014, pp. 53-63.

A. Lamkanfi, S. Demeyer, E. Giger, and B. Goethals, “Predicting the
severity of a reported bug,” in Mining Software Repositories (MSR),
2010 7th IEEE Working Conference on. 1EEE, 2010, pp. 1-10.

Almhana et al.: Preprint submitted to Elsevier

Page 18 of 19

http://doi.acm.org/10.1145/2597008.2597148
http://www-personal.umd.umich.edu/~marouane/tsedata.zip
http://www-personal.umd.umich.edu/~marouane/tsedata.zip

[35]

(36]

[37]

(38]

(391

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(47]

[48]

(49]

(50]

(51]

[52]

(53]

[54]

Method-Level Bug Localization Using Hybrid Multi-objective Search

Y. Tian, D. Lo, and C. Sun, “Drone: Predicting priority of reported
bugs by multi-factor analysis,” in 2013 IEEE International Confer-
ence on Software Maintenance. 1EEE, 2013, pp. 200-209.

K. C. Youm, J. Ahn, and E. Lee, “Improved bug localization based
on code change histories and bug reports,” Information and Software
Technology, vol. 82, pp. 177-192, 2017.

S. K. Lukins, N. A. Kraft, and L. H. Etzkorn, “Bug localization us-
ing latent dirichlet allocation,” Information and Software Technology,
vol. 52, no. 9, pp. 972-990, 2010.

Q. Huang, D. Lo, X. Xia, Q. Wang, and S. Li, “Which packages would
be affected by this bug report?” in 2017 IEEE 28th International Sym-
posium on Software Reliability Engineering (ISSRE). 1EEE, 2017,
pp. 124-135.

M. Wen, R. Wy, and S.-C. Cheung, “Locus: Locating bugs from soft-
ware changes,” in 2016 31st IEEE/ACM International Conference on
Automated Software Engineering (ASE). 1EEE, 2016, pp. 262-273.
C. Tantithamthavorn, S. L. Abebe, A. E. Hassan, A. Thara, and K. Mat-
sumoto, “The impact of ir-based classifier configuration on the perfor-
mance and the effort of method-level bug localization,” Information
and Software Technology, vol. 102, pp. 160-174, 2018.

X. Ye, R. Bunescu, and C. Liu, “Mapping bug reports to relevant files:
A ranking model, a fine-grained benchmark, and feature evaluation,”
IEEE Transactions on Software Engineering, vol. 42, no. 4, pp. 379—
402, 2015.

P. Loyola, K. Gajananan, and F. Satoh, “Bug localization by learning
to rank and represent bug inducing changes,” in Proceedings of the
27th ACM International Conference on Information and Knowledge
Management. ACM, 2018, pp. 657-665.

A.N. Lam, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen, “Bug
localization with combination of deep learning and information re-
trieval,” in 2017 IEEE/ACM 25th International Conference on Pro-
gram Comprehension (ICPC). 1EEE, 2017, pp. 218-229.

Y. Xiao, J. Keung, K. E. Bennin, and Q. Mi, “Machine translation-
based bug localization technique for bridging lexical gap,” Informa-
tion and Software Technology, vol. 99, pp. 58-61, 2018.

M. Harman and B. F. Jones, “Search-based software engineering,”
Information and software Technology, vol. 43, no. 14, pp. 833-839,
2001.

M. Harman, Y. Jia, and Y. Zhang, “Achievements, open problems and
challenges for search based software testing,” in 2015 IEEE 8th Inter-
national Conference on Software Testing, Verification and Validation
(ICST). 1IEEE, 2015, pp. 1-12.

A. Nufiez, M. G. Merayo, R. M. Hierons, and M. Niifiez, “Using ge-
netic algorithms to generate test sequences for complex timed sys-
tems,” Soft Computing, vol. 17, no. 2, pp. 301-315, 2013.

M. Papadakis, M. Kintis, J. Zhang, Y. Jia, Y. Le Traon, and M. Har-
man, “Mutation testing advances: an analysis and survey,” in Ad-
vances in Computers. Elsevier, 2019, vol. 112, pp. 275-378.

C. Henard, M. Papadakis, and Y. Le Traon, “Mutation-based gener-
ation of software product line test configurations,” in International
Symposium on Search Based Software Engineering. Springer, 2014,
pp. 92-106.

J. Shelburg, M. Kessentini, and D. R. Tauritz, “Regression testing for
model transformations: A multi-objective approach,” in International
Symposium on Search Based Software Engineering. Springer, 2013,
pp. 209-223.

D. Dreyton, A. A. Aratjo, A. Dantas, A. Freitas, and J. Souza,
“Search-based bug report prioritization for kate editor bugs reposi-
tory,” in International Symposium on Search Based Software Engi-
neering. Springer, 2015, pp. 295-300.

D. Dreyton, A. A. Aratjo, A. Dantas, R. Saraiva, and J. Souza, “A
multi-objective approach to prioritize and recommend bugs in open
source repositories,” in International Symposium on Search Based
Software Engineering. Springer, 2016, pp. 143-158.

E.-G. Talbi, Metaheuristics: from design to implementation.
Wiley & Sons, 2009, vol. 74.

W. B. Mock, “Pareto optimality,” Encyclopedia of Global Justice, pp.
808-809, 2011.

John

[55]

[56]

[57]

[58]

[59]

[60]

[61]

E. Ulungu, J. Teghem, P. Fortemps, and D. Tuyttens, “Mosa method:
a tool for solving multiobjective combinatorial optimization prob-
lems,” Journal of multicriteria decision analysis, vol. 8, no. 4, p. 221,
1999.

P.-N. Tan et al., Introduction to data mining.
India, 2006.

E. Enslen, E. Hill, L. Pollock, and K. Vijay-Shanker, “Mining source
code to automatically split identifiers for software analysis,” in Mining
Software Repositories, 2009. MSR’09. 6th IEEE International Work-
ing Conference on. 1EEE, 2009, pp. 71-80.

A. A. Keller, Multi-Objective Optimization in Theory and Practice II:
Metaheuristic Algorithms. Bentham Science Publishers, 2019.

M. T. Emmerich and A. H. Deutz, “A tutorial on multiobjective opti-
mization: fundamentals and evolutionary methods,” Natural comput-
ing, vol. 17, no. 3, pp. 585-609, 2018.

K. Deb and S. Gupta, “Understanding knee points in bicriteria prob-
lems and their implications as preferred solution principles,” Engi-
neering optimization, vol. 43, no. 11, pp. 1175-1204, 2011.

F. Wilcoxon, S. Katti, and R. A. Wilcox, “Critical values and proba-
bility levels for the wilcoxon rank sum test and the wilcoxon signed
rank test,” Selected tables in mathematical statistics, vol. 1, pp. 171—
259, 1970.

Pearson Education

Almhana et al.: Preprint submitted to Elsevier

Page 19 of 19

