On the Relationship Between Developer Experience and
Refactoring: An Exploratory Study and Preliminary Results

Eman Abdullah AlOmar
eman.alomar@mail.rit.edu
Rochester Institute of Technology
Rochester, New York, USA

Mohamed Wiem Mkaouer

mwmvse@rit.edu
Rochester Institute of Technology
Rochester, New York, USA

ABSTRACT

Refactoring is one of the means of managing technical debt and
maintaining a healthy software structure through enforcing best
design practices, or coping with design defects. Previous refactoring
surveys have shown that these code restructurings are mainly exe-
cuted by developers who have sufficient knowledge of the system’s
design, and disposing of leadership roles in their development teams.
However, these surveys were mainly limited to specific projects
and companies. In this paper, we explore the generalizability of
the previous results though analyzing 800 open-source projects.
We mine their refactoring activities, and we identify their corre-
sponding contributors. Then, we associate an expertise score to
each contributor in order to test the hypothesis of whether de-
velopers with higher scores tend to perform a higher number of
refactoring operations. We found that (1) although refactoring is
not restricted to a subset of developers, those with higher experi-
ences score tend to perform more refactorings than others; (2) our
qualitative analysis of three randomly sampled projects show that
the developers who are responsible for the majority of refactoring
activities are typically on advanced positions in their development
teams, demonstrating their extensive knowledge of the design of
the systems they contribute to.

CCS CONCEPTS

« Software and its engineering — Software evolution; Main-
taining software.

KEYWORDS

Software maintenance and evolution, Mining software repositories,
Software refactoring, Developer experience, Quality

ACM Reference Format:
Eman Abdullah AlOmar, Anthony Peruma, Christian D. Newman, Mohamed
Wiem Mkaouer, and Ali Ouni. 2021. On the Relationship Between Developer

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA

© 2021 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Anthony Peruma
anthony.peruma@mail.rit.edu
Rochester Institute of Technology
Rochester, New York, USA

Christian D. Newman
cnewman(@se.rit.edu
Rochester Institute of Technology
Rochester, New York, USA

Ali Ouni

ali.ouni@etsmtl.ca
ETS Montreal, University of Quebec
Montreal, Quebec, Canada

Experience and Refactoring: An Exploratory Study and Preliminary Results.
In Proceedings of ACM Conference (Conference’17). ACM, New York, NY,
USA, 8 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Refactoring has been considered, along with code reviews, as the
main quality safeguard and the backbone of managing technical
debt [8]. Therefore, understanding the best refactoring practices is
highly important. The spectrum of research exploring the practice
of refactoring covers a wide variety of dimensions, such as the iden-
tification of refactoring opportunities [11, 23, 24], recommendation
of adequate refactoring operations [7, 9, 16-19, 30, 35], detection
of applied refactorings [12, 32, 40], studying the impact of refac-
toring on quality [6, 29, 41, 42], the reasons as to why developers
refactor their code [25, 26, 31], etc. However, little is known about
how the level of experience influences developer refactoring ac-
tivities. Nevertheless, developer experience directly impacts their
ability to estimate software quality, and therefore, their ability to
determine the appropriate refactoring strategy that needs to be de-
ployed. Moreover, developers’ knowledge of the system’s structure
and sub-components varies, and so is their privilege to access and
modify them. This paper aims to start the discussion around the
importance of considering the developer’s experience as part of
proposing solutions related to refactoring, since their applicabil-
ity depends on the perception and privilege of the developers in
charge.

A couple of refactoring studies have pointed out that refactoring
is typically performed by experienced developers: Tsantalis et al.
[36] performed a multidimensional empirical study on refactoring
activities that included: the proportion of refactoring operations
performed on production and test code, the most active refactoring
contributors, the relationship between refactorings with releases
and testing activity, and the purpose of the applied refactorings.
With regard to developer experience, the authors found that the
top refactoring contributors had a management role within the
project. In another study, Kim et al. [13] surveyed 328 professional
software engineers at Microsoft to investigate when and how they
do refactoring. They found that developers with different expertise
levels experienced five risk factors involved in refactoring, namely,
regression bugs, code churns, merge conflicts, time taken from other
tasks, the difficulty of performing code reviews after refactoring,
and the testing cost. They also investigated the relationship between

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA

the refactoring effort and reduction of the number of inter-module
dependencies and after release defects. They reported that other
factors, such as developer experience, need to be examined as the
changes to the number of module dependencies and post-release
defects might be caused by such factors other than refactoring. The
findings of these studies [13, 22, 36] indicate that experience plays
a significant role in the execution of refactoring, yet they were both
limited to developer surveys without any concrete evidence from
the source code, and they were also limited to a few projects.

In this paper, we explore the hypothesis of whether developers
with more experience are most likely to be responsible for a higher
number of refactoring activities. We aim to challenge the gener-
alizability of the previous findings indicating that only a subset
of developers performs major refactoring activities. Our study is
driven by the two following research questions:

e RQ1. What is the distribution of experience among develop-
ers that perform refactorings?
To answer this research question, we start with mining refac-
torings from 800 well-engineered projects. We identify the
subset of authors who were involved in these refactoring
activities along with all project contributors. We estimate
their experience in the project by measuring their developer
commit ratio score. We compare the scores of developers
whose commits witnessed refactorings with the scores of
developers whose commits had no refactorings.

e RQ2. Would higher experience indicate higher refactoring
activities?
The rationale behind this question is investigating whether
refactoring activities tend to be performed by a subset of
developers. To answer this question, we split developers,
based on their experience score, into two sets, where the
first set contains the top 5% of developers with high expe-
rience scores while the second set gathers the remaining
contributors. Then we compared the count of the refactor-
ings performed by each set. We further randomly sampled
three projects, and we extracted their top contributors with
respect to refactoring both production and test code.

The remainder of this paper is organized as follows. Section 2
outlines our experimental methodology in collecting the necessary
refactoring data for the experiments that are discussed afterward in
Section 3. Section 4 gathers potential limitations to the validity of
our empirical analysis before concluding and describing our future
work directions in Section 5.

2 METHODOLOGY

Our research methodology consists of three main phases - Data
Collection, Detection & Extraction, and Data Analysis. Figure 1
provides an overview of our methodology. Described below are
details of the methodology activities.

To conduct our exploratory study, we used a dataset of well-
engineered open-source Java projects. The authors of this dataset
[20] curated a set of open-source projects, proven to follow software
engineering practices such as documentation, testing, issue and
bug tracking, and project management. We chose this dataset as
it was also analyzed in previous studies [3, 10, 27] that have been
mining refactoring operations, just like our study. In total, our

Eman Abdullah AlOmar, Anthony Peruma, Christian D. Newman, Mohamed Wiem Mkaouer, and Ali Ouni

Detect & Extract
Refactorings

A
\

Clone Data Analysis

Engineered e
Repositories (automated & manual)

Open-Source

Java Projects

A

\

Extract Commit
Details

Figure 1: Overview of our methodology

dataset is composed of 800 projects hosted on GitHub. Each project
was cloned in order to extract the data needed for our experiments.
This data included, but not limited to, each commit author, source
files impacted by each committed change, and timestamps etc. The
projects in our dataset were cloned in early 2019, and 74.6% of the
projects had their most recent commit within the last three years.

Next, we utilized RefactoringMiner [37] to identify refactoring
operations occurring in the projects. RefactoringMiner iterates over
the commit history of a repository in chronological and compares
the changes made to Java source code files in order to detect refac-
torings. Of the available state-of-the-art set of refactoring detection
tools, RefactoringMiner has the highest performance, more specif-
ically, a precision of 98% and a recall of 87% [31, 37]. Running
refactoringMiner on the projects under study, resulted scanning a
total of 748,001 commits, from which, 111,884 commits contained at
least one refactoring operation, and we collected a total of 711,495
refactoring operations. On average, each project contains 732 refac-
toring commits authored by 19 developers.

Finally, we analyzed the output generated from our detection
and extraction activities to answer our research questions. Since our
research questions are both quantitative and qualitative, we used
tools/scripts along with manual activities to arrive at our findings.

For replication purposes, our dataset and other artifacts are avail-
able on our project website [1].

3 RESULTS & DISCUSSION

In this section, we report and discuss our findings for analyzing the
identified refactoring-related patterns to answer our two research
questions RQ1 and RQ2.

3.1 What is the distribution of experience
among developers that perform
refactorings?

For our experiment on developer experience, we looked at the
project contributions made by the developer. In other words, we
utilized the volume of commits made to Java source code files by

On the Relationship Between Developer Experience and Refactoring: An Exploratory Study and Preliminary Results

Table 1: Statistical summary of DCR scores based on the type
of commit performed in the project

Min. 1stQu. Median Mean 3rd Qu. Max.

Non-Refactoring Commits
0.0001 0.0010 0.0019 0.0031

All Commits
0.0197 0.0456

0.0043 0.0130

0.0002 0.0065 0.0604 0.2632

a developer as a proxy for experience. Introduced by [14], this ap-
proach calculates the Developer’s Commit Ratio (DCR) for each
developer in the project. This ratio measures the number of indi-
vidual commits made by the developer against all project commits.
Formally, this ratio is defined as:

DCR = IndividualContributorCommits (1)

TotalProjectCommits

In our experiment, we only consider the author of a commit as its
developer. We followed the same approach as in Peruma et al. [27],
where the authors looked at the DCR distribution of developers
that perform rename refactorings. As shown in Figure 2, we looked
at two types of distributions - developers that only performed non-
refactoring operations (depicted as ‘Non-Refactoring Commits’ in
the chart), and developers that performed a mix of refactoring and
non-refactoring operations on the source code (depicted as ‘All
Commits’ in the chart). Not surprisingly, our dataset had a large
proportion of developers that performed a mix of refactoring and
non-refactoring operations. These developers also had a higher
DCR score.

A clear observation in Figure 2 shows that developers who are
involved in the implementation and maintenance of a system have
more experience than developers that are exclusively focused on
implementing new features. Even though we see an overlap in
the density plot, the majority of non-refactoring developers are
more concentrated on the lower end of the DCR scale. Furthermore,
looking at the statistical summary of DCR scores in Table 1, we
see that the average DCR score of a developer performing only
non-refactoring commits is 0.0031 while the average DCR score of a
developer performing all types of commit operations is 0.0456. Simi-
lar to [27] we performed a nonparametric Mann-Whitney-Wilcoxon
test on the DCR values for developers that do not perform any refac-
toring operations and those that did. We obtained a statistically
significant p-value (< 0.05) when the DCR values of these two
groups of developers were compared. Hence, this shows that devel-
opers working exclusively on new features to a system are more
likely to have less experience in the project than developers whose
work also includes performing refactoring activities. Our findings
also confirm the studies carried out by [13, 36] that developer expe-
rience is an essential factor when it comes to software refactoring.
However, unlike [13, 36], the approach we took relied on a metric
(DCR) and was performed automatically over a much larger sample.

Conference’17, July 2017, Washington, DC, USA

Summary Using an alternate approach (i.e., developer con-
tributions), we confirm findings from prior research that
more experienced developers are typically involved in
refactoring activities in systems. As our approach utilizes
existing repository data, and is automated, it provides a
non-subjective and scalable approach to estimate the most
experienced developers in a project and thereby help to
identify developers that are suitable for specific project
tasks.

3.2 Would higher experience indicate higher
refactoring activities?

In this research question, we investigate whether specific develop-
ers are significantly contributing to the overall refactoring of the
system, or if it is randomly distributed among all developers. We
approach this research question from two fronts - quantitative and
qualitative. In the quantitative approach, we perform an empirical
and automated study on our dataset. In the qualitative approach,
we perform a manual, case study like investigation on a select set
of projects.

Quantitative

This part of the research question utilizes the DCR values as-
sociated with each developer in the project, along with the total
number of refactoring and non-refactoring commits made by the
developer for only Java source files. To perform the comparison, we
split the developers into two sets. The first set consisted of develop-
ers that fell into the top 5% (labeled as TOP-5) of DCR scores while
the second set contained the remaining (i.e., 95%) developers. The
TOP-5 of developers equated to approximately a 95% confidence
level and confidence interval of 5. Represented by the TOP-5 are
372 developers, while the remaining developers amount to 7,066.
For developers in each of the two sets, we obtained the count of
refactoring and non-refactoring commits made by the developer.
Figure 3 shows a violin plot of this dataset. Chart ‘A’ shows the
refactoring and non-refactoring commits of the TOP-5 of devel-
opers, while chart ‘B’ shows the same counts for the remaining
developers. A violin plot provides an ideal mechanism to represent
our findings as they are useful in providing a visual comparison of
multiple distributions. For better interpretation and visualization,
we removed outliers from the data via the Tukey’s fences approach
[39].

Looking at Figure 3, the first clear observation we see is the
volume of commit counts made by the two sets of developers. A
majority of the TOP-5 developers contribute significantly more to
the project in terms of refactoring and non-refactoring commits.
On average, a TOP-5 developer makes 70.24 and 223.7 refactoring
and non-refactoring commits, respectively. On the other hand, the
rest of the developers average around 3.21 and 15.69 refactoring
and non-refactoring commits, respectively. Furthermore, the TOP-
5 violin plot shows a high frequency of developers performing,
approximately, 15 to 75 refactoring commits. The same does not
hold for non-refactoring commits, where we see a higher density
within the range of 75 to 125 commits. Additionally, we observed
that our dataset contains some developers that perform at most

Conference’17, July 2017, Washington, DC, USA

Eman Abdullah AlOmar, Anthony Peruma, Christian D. Newman, Mohamed Wiem Mkaouer, and Ali Ouni

1.00 A

0.751

0.50

Density

0.251

0.00

le-04 1le-03

le-02 le-01 1le+00

Developer Commit Ratio (Log Scale)

DAII CommitsDNon—Refactoring Commits

Figure 2: Distribution of DCR values for developers based on the type of commit performed in their project

Table 2: Statistical summary of the volume of refactoring op-
erations performed by the top 5% and the remaining set of
developers

Min. 1stQu. Median Mean 3rd Qu. Max.
Top 5%
1.00 2.00 6.00 11.14 15.00 55.00
Rest
1.00 1.00 2.00 3.57 5.00 16.00

around 300 refactoring commits while non-refactoring commits go
up to around 800. Hence, non-refactoring commit counts have a
higher variation than refactoring commits. The refactoring box plot
is more condensed than the non-refactoring boxplot; this indicates
that the data varies less and hence is more consistent.

Finally, we looked at the number of refactoring operations per-
formed by the two groups of developers. It should be noted that
a single refactoring commit can contain one or more refactoring
operations. A statistical summary of our findings is presented in
Table 2, while a comparative histogram is available in Figure 4.Even
though the histogram shows a higher volume of refactoring op-
erations by inexperienced developers, it should be noted that this
is the cumulative count across all projects in the dataset. If we
were to look at the individual developer contributions, we could
see that experienced developers apply refactorings more often than
inexperienced developers.

Qualitative
To better understand the key role of the TOP-5 contributors
in the development team, we extract refactorings from a select

set of projects - Hadoop?!, OrientDB?, and Camel®. These three
systems were chosen based on the criteria used in [15] (i.e., had more
than 100 stars, had more than 60 forks, had size over 2 MB, these
repositories are active and well-used). Next, we cluster production
and test files of these projects, by developer ID. Finally, we carefully
examine the top contributor’s professional profiles to identify their
role in the organization hosting the software project. Our findings
are detailed below.

Figure 5 portrays the distribution of the refactoring activities on
production code and test code performed by project contributors
for each software system we examined. The Hadoop project has
a total of 114 developers. Among them are 73 (64%) refactoring
contributors. As we observe in Figures 5a and 5b , not all of the
developers are major refactoring contributors. The main refactoring
contributor has a refactoring ratio of 25% on production code and
10% on test code. Figure 5c¢ and 5d present the percentage of the
refactorings for the OrientDB production code and test code. Out of
the total 113 developers, 35 (31%) were involved refactoring. The top
contributor has a refactoring ratio of 57% and 44% on production
and test code respectively. For Camel, in Figures 5e and 5f, 73 (20%)
developers were on the refactoring list out of 368 total committers.
The most active refactoring contributor has high ratios of 51%
and 48% respectively in production and test code. We also note
that very few developers applied refactorings exclusively on either
production code or test code for the three projects under study.

The manual analysis aligns with the findings of the previous
section in distinguishing a subset of developers that monopolize
the refactoring activity across the three projects. To identify their
key role in the development of the project, we searched, using

Uhttps://github.com/apache/hadoop
2https://github.com/orientechnologies/orientdb
3https://github.com/apache/camel

https://github.com/apache/hadoop
https://github.com/orientechnologies/orientdb
https://github.com/apache/camel

On the Relationship Between Developer Experience and Refactoring: An Exploratory Study and Preliminary Results

A Top 5% of Developers

900-
850-
800~
750-
700-
650-
600-
€ 550-
3 500-
2 450-
€ 400-

3 3s0- [

300-
250~
200~
150~
100-

50-

o-

NonfRefacm‘ring Commits

Refaclonné Commits

Commit Type
B Rest of Developers
26-
24-
225
20-
18-
_16-
=
3 14-
o
E 12-
£
3 10-
8-
6-
4-
2-
0-
Non*RefactD‘ring Commits Refaclorin§ Commits
Commit Type

Figure 3: Comparative counts of refactoring and non-
refactoring commits for developers. Chart ‘A’ is for the top
5% of developers, while chart ‘B’ is for the remaining devel-
opers

their GitHub IDs, their professional profiles on Linked-In. We
were successful in locating the role of the top contributors for the 3
projects, and we found, through their public affiliation to the project,
that they were either development leads or senior developers.

Our findings show that refactoring activities are mainly per-
formed by a subset of developers who have a management role in
the company. Senior developers care more about refactoring the
source code to ensure high-quality software and make the soft-
ware easier for future development. These subsets of developers
may perform certain practices when applying code refactoring (e.g.,
refactoring before and after adding new features, testing frequently
to avoid any bugs that may introduce and affect the functionality
of the software, and documenting and automating the application
of refactoring). One of the reasons that seems not to encourage the
other subsets of developers to significantly refactor the code is the
technical constraints such as inadequate tool supports or lack of
trust of automated support for composite refactorings. A discus-
sion about various barriers to refactoring has been highlighted in
Murphy et al. [21].

4Used in previous studies as a source to identify developers skills and experience.

.

Conference’17, July 2017, Washington, DC, USA

Top 5% of Developers Rest of Developers

3000
|
20000
|

2500

15000
1

2000

Frequency
1500
|
Frequency
10000
|

1000
|

5000
1

500
|

T T T T T 1
0 10 20 30 40 50 5 10 15

Refactoring Operations Refactoring Operations

Figure 4: Histogram of refactoring operations performed by
the top 5% and the remaining set of developers

Summary. While refactorings are applied by various de-
velopers, only a reduced set of developers are responsible
for performing the majority of these activities, in both
production and test files. This set of developers take over
refactoring activities without necessarily being dominant
in other programming activities. As we examine the top
contributor’s publicly accessible professional profiles, we
identify their positions to be advanced in the development
team; hence, demonstrating their extensive knowledge of
the design of the systems they contribute to.

3.3 Research implications and future
directions

While refactoring is being applied by various developers, it would
be interesting to evaluate their refactoring practices. We want to
capture and better understand the code refactoring best practices
and learn from experienced developers so that we can recommend
them for other developers. Also, it would be interesting to inves-
tigate the difference between the experienced and inexperienced
developers in terms of distributions of refactoring operations, i.e.,

Mohamed Wiem Mkaouer, and Ali Oun

5

Newman

Eman Abdullah AlOmar, Anthony Peruma, Christian D.

Conference’17, July 2017, Washington, DC, USA

in Hadoop, OrientDB and Camel

tributors in production and test files

ing con

: Refactori

Figure 5

2P0 1531, @IUALIQ (P)

2p02 353 [Pre) ()

%1 01 19dopPasq
%6 b 12dopasg

%11 ¢ 1doppasq

%z 6 2dopasq

481 7 19dojars

%¥ 9 12dofaAaq -

%g g 1adopasq

%¥ ¢ 1ddoppasq

)

%2 01 1dofadq %t 9 19dofaaaq

% L 1adopasg \

47 § 2dopasq

%8 ¢ 1adojaray \

%1 6 1dojpasq

%g L 1vdoppasq

41 ¢1 1ado] u>mn—w

%1 21 19dofaad
%I 1T I9dopPasq

%61 g 1doppasq %S § 12dofaaa(g

%01 ¢ 12doparaq

apos uonnpoad [aure) (3) apod uonanpord giuaLiQ (9)

%L ¥ 1odofaadq

%1 €1 1adoppasq %16 1 12doppasq

%S 9 12dofaAa(]

T

21 01 12dopaasq
%1 g1 Iadofaaa

T %p ¢ 19dofpaaq

—

—
%21 ¢ 1doppasq

\

%81 g 12doppasq

%g £ 1adofaadq

%7 6 2dopAd

%1 11 19dopas
%g g 1adofaaa
%1 01 19do[aad

%9 ¢ 12dopPasq

N

%7 9 1adopara] %6 ¢ 12do[aAd(]

%6 ¢ 1odofaaag % ¥ 19dofana

/ 4z g 1adopaaaq
%1 6 1adojanaq

%z L 12dofaadq

apo2 359, doopey (q)

%€ 1T Iadofaaa

%¢ 01 Iadofaaa

%z L1 12doppas /

%¢ 91 1adofaAa

%1 ¢ dopraq

—

%g 81 Iadofaaa
%¢ 6 1doaaaq

~_
%L ¥ 12dojpasq

2y 1 dopasq

— |—

%6 6 1adofanag

%¢ g 1adopaaq

%¥ 9 1adofaaaq \

%g 61 1adoppasq

%2 p1 12dopasq
2z g1 2dopas
4z g1 10dopasg

apod uorponpoxd doopey (e)

%1 L1 12dopasg
2z g1 1odofaraq]

4z 71 1doprsq
%1 91 13doppasq

%¢ 01 1dojpasq
%01

¢ 1adofanaq
%¢ 6 12dofaAa]
%g 11 1doppasq
—

[
%1 81 1odoppasq

%¢ g Tadofaaaq
%1 61 1adofaaaq
%¢ £ 12dofaaa

%z $1 12doppasq

%6 9 1adofanaq

~

%6 ¢ 1adofaaq

26 dopasq

On the Relationship Between Developer Experience and Refactoring: An Exploratory Study and Preliminary Results

we aim to see if any specific refactoring types are highly solicited by
one group compared to the other. As previous studies have already
shown, some refactoring operations tend to be more complex than
others [21], and so it is interesting for us to validate it in practice.

AlOmar et al. [2] performed an exploratory study on how devel-
opers document their refactoring activities in commit messages;
this activity is called Self-Affirmed Refactoring (SAR). They found
that developers tend to use a variety of textual patterns to document
their refactoring activities, such as refactor, move and extract. In
follow-up work, AlOmar et al. [3] identified which quality models
are more in-line with the developer’s vision of quality optimiza-
tion when they explicitly mention in the commit messages that
they refactor to improve these quality attributes. Since we noticed
that various developers are responsible for performing refactorings,
one potential research direction is to investigate which developers
are responsible for the introduction of SARs in order to examine
whether or not experience plays a role in the introduction of SARs.
Another potential research direction is to study if developer experi-
ence is one of the factors that might contribute to the significant
improvement of the quality metrics that are aligned with devel-
oper perception tagged in the commit messages. In other words,
we would like to evaluate the top contributors refactoring practice
against all the rest of refactoring contributors by assessing their
contributions on the main internal quality attributes improvement
(e.g., cohesion, coupling, and complexity). Furthermore, previous
studies analyzed the impact of refactorings on structural metrics
and quality attributes [6, 29, 41, 42]. It would be interesting to revisit
such analysis while taking into account the degree of expertise of
the refactoring contributors. As developers with larger experience
and managerial roles have better exposure to the system’s design,
it is expected that their restructurings are of better quality, and this
can be empirically demonstrated.

Furthermore, with regards to the analysis of refactoring and
design quality, previous studies investigated how refactorings can
be responsible for introducing code smells, and so hindering the
design quality [28, 38]. It would be interesting to verify whether
such unexpected results can correlate with the developer’s experi-
ence. Along with hindering design quality, the misuse of refactoring
can also be responsible for bugs [4, 5], and various studies have
proposed testing strategies to make refactoring safer [33, 34]. One
of our future directions is to also correlate the bug-proneness of
refactorings with the degree of expertise of the contributors. It is
assumed that the lack of functional knowledge may facilitate the
introduction of bugs, but this is subject to empirical validation as
well.

4 THREATS TO VALIDITY

The first threat is that our analysis is restricted to only open-source,
Java, Git-based repositories. However, we were still able to ana-
lyze projects that are highly varied in size, contributors, number
of commits, and refactorings. Additionally, the representativeness
of the dataset can be considered as a threat to this study. However,
we mitigate this threat by utilizing 800 engineered projects that
have also been part of a prior study on refactoring [27]. Further-
more, the projects are of varying sizes, contributors, and refactoring
operations.

Conference’17, July 2017, Washington, DC, USA

The accuracy of the refactoring detection tool also poses a threat
to our study. However, previous studies [31, 37] report on high
precision and recall scores for RefactoringMiner. However, a draw-
back to using RefactoringMiner is that the study is limited to Java
projects. Our future work includes the use of refactoring mining
tools that support other programming languages, such as RefDiff
[32], to expand the representativeness of our dataset.

A major threat to validity is related to the calculation of expe-
rience. Obtaining the experience of each and every developer is a
challenge for our study, given the volume of data in our dataset
and also that experience can be subjective. Hence, we adopted a
mechanism (i.e., DCR), used by prior research [14, 27], where we
utilized project contributions as a proxy for experience. The reason-
ing behind the measurement assumes that the longer a developer is
involved in a project, and the more they contribute to it, the more
experienced they become. Such an assumption may not hold for
some specific scenarios; however, since the projects in our dataset
are heterogeneous in nature, our assumption holds.

5 CONCLUSION

We present an exploratory study of the level of experience of devel-
opers that apply refactorings. Prior studies use smaller samples to
study similar questions; however, in our study, we have examined
a more extensive and representative set of systems by comparison.
Since we can confirm results from prior, manual studies automati-
cally, we have identified a way to obtain similar results automat-
ically. This means that it is possible to now study the impact of
developer experience on a larger scale.

In future work, we plan to leverage the results from this study
to determine specific types of refactorings made by developers at
different experience levels. We would also like to explore ways to
leverage this data to help suggest/recommend refactorings or sug-
gest/recommend refactoring methodology based on the developers
level of experience.

ACKNOWLEDGMENTS

We would like to thank the authors of Refactoring Miner for publicly
providing it.

REFERENCES

[1] [n.d.]. Project Website. https://sites.google.com/g.rit.edu/refactoring/.

[2] Eman Abdullah AlOmar, Mohamed Wiem Mkaouer, and Ali Ouni. 2019. Can
Refactoring Be Self-Affirmed? An Exploratory Study on How Developers Docu-
ment Their Refactoring Activities in Commit Messages. In Proceedings of the 3rd
International Workshop on Refactoring (Montreal, Quebec, Canada) (IWOR ’19). 8.
https://doi.org/10.1109/IWoR.2019.00017

[3] Eman Abdullah AlOmar, Mohamed Wiem Mkaouer, Ali Ouni, and Marouane
Kessentini. 2019. On the impact of refactoring on the relationship between quality
attributes and design metrics. In 2019 ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM). IEEE, 1-11.

[4] Everton LG Alves, Myoungkyu Song, and Miryung Kim. 2014. RefDistiller: a
refactoring aware code review tool for inspecting manual refactoring edits. In
Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering. 751-754.

[5] Gabriele Bavota, Bernardino De Carluccio, Andrea De Lucia, Massimiliano

Di Penta, Rocco Oliveto, and Orazio Strollo. 2012. When does a refactoring

induce bugs? an empirical study. In IEEE 12th International Working Conference

on Source Code Analysis and Manipulation. 104-113.

Gabriele Bavota, Andrea De Lucia, Massimiliano Di Penta, Rocco Oliveto, and

Fabio Palomba. 2015. An experimental investigation on the innate relationship

between quality and refactoring. Journal of Systems and Software 107 (2015).

=

https://sites.google.com/g.rit.edu/refactoring/
https://doi.org/10.1109/IWoR.2019.00017

Conference’17, July 2017, Washington, DC, USA

7]

8]

(9]

[10]

(11

[12]

[13]

[14]

[15

[16

[17

[18

[19]

[20]

[21

[22

[23

[24

[25]

[26

Gabriele Bavota, Andrea De Lucia, Andrian Marcus, and Rocco Oliveto. 2014. Rec-
ommending refactoring operations in large software systems. In Recommendation
Systems in Software Engineering. Springer, 387-419.

Zadia Codabux and Byron Williams. 2013. Managing technical debt: An industrial
case study. In 2013 4th International Workshop on Managing Technical Debt (MTD).
IEEE, 8-15.

Marcos César de Oliveira, Davi Freitas, Rodrigo Bonifacio, Gustavo Pinto, and
David Lo. 2019. Finding needles in a haystack: Leveraging co-change depen-
dencies to recommend refactorings. Journal of Systems and Software 158 (2019),
110420.

Sarah Fakhoury, Devjeet Roy, Adnan Hassan, and Vernera Arnaoudova. 2019.
Improving source code readability: theory and practice. In 2019 IEEE/ACM 27th
International Conference on Program Comprehension (ICPC). IEEE, 2-12.
Francesca Arcelli Fontana, Pietro Braione, and Marco Zanoni. 2012. Automatic
detection of bad smells in code: An experimental assessment. Journal of Object
Technology 11, 2 (2012), 5-1.

Miryung Kim, Matthew Gee, Alex Loh, and Napol Rachatasumrit. 2010. Ref-
Finder: a refactoring reconstruction tool based on logic query templates. In Pro-
ceedings of the eighteenth ACM SIGSOFT international symposium on Foundations
of software engineering. ACM, 371-372.

Miryung Kim, Thomas Zimmermann, and Nachiappan Nagappan. 2014. An em-
pirical study of refactoringchallenges and benefits at microsoft. IEEE Transactions
on Software Engineering 40, 7 (2014), 633-649.

D. E. Krutz, N. Munaiah, A. Peruma, and M. Wiem Mkaouer. 2017. Who Added
That Permission to My App? An Analysis of Developer Permission Changes
in Open Source Android Apps. In 2017 IEEE/ACM 4th International Conference
on Mobile Software Engineering and Systems (MOBILESoft). 165-169. https:
//doi.org/10.1109/MOBILESoft.2017.5

Stanislav Levin and Amiram Yehudai. 2017. Boosting Automatic Commit Clas-
sification Into Maintenance Activities By Utilizing Source Code Changes. In
Proceedings of the 13th International Conference on Predictive Models and Data
Analytics in Software Engineering (Toronto, Canada) (PROMISE). ACM, New York,
NY, USA, 97-106. https://doi.org/10.1145/3127005.3127016

Mohamed Wiem Mkaouer, Marouane Kessentini, Slim Bechikh, Kalyanmoy Deb,
and Mel O Cinnéide. 2014. High dimensional search-based software engineer-
ing: finding tradeoffs among 15 objectives for automating software refactoring
using NSGA-IIL. In Proceedings of the 2014 Annual Conference on Genetic and
Evolutionary Computation. 1263-1270.

Mohamed Wiem Mkaouer, Marouane Kessentini, Slim Bechikh, Mel O’Cinnéide,
and Kalyanmoy Deb. 2014. Software refactoring under uncertainty: a robust
multi-objective approach. In Proceedings of the Companion Publication of the 2014
Annual Conference on Genetic and Evolutionary Computation. 187-188.
Mohamed Wiem Mkaouer, Marouane Kessentini, Mel O Cinnéide, Shinpei
Hayashi, and Kalyanmoy Deb. 2017. A robust multi-objective approach to bal-
ance severity and importance of refactoring opportunities. Empirical Software
Engineering 22, 2 (2017), 894-927.

Wiem Mkaouer, Marouane Kessentini, Adnan Shaout, Patrice Koligheu, Slim
Bechikh, Kalyanmoy Deb, and Ali Ouni. 2015. Many-objective software re-
modularization using NSGA-III. ACM Transactions on Software Engineering and
Methodology (TOSEM) 24, 3 (2015), 1-45.

Nuthan Munaiah, Steven Kroh, Craig Cabrey, and Meiyappan Nagappan. 2017.
Curating GitHub for engineered software projects. Empirical Software Engineering
22, 6 (2017), 3219-3253.

Emerson Murphy-Hill and Andrew P. Black. 2008. Breaking the Barriers to
Successful Refactoring: Observations and Tools for Extract Method. In Proceedings
of the 30th International Conference on Software Engineering (Leipzig, Germany)
(ICSE °08). Association for Computing Machinery, New York, NY, USA, 421-430.
https://doi.org/10.1145/1368088.1368146

Christian D Newman, Mohamed Wiem Mkaouer, Michael L Collard, and
Jonathan I Maletic. 2018. A study on developer perception of transformation
languages for refactoring. In Proceedings of the 2nd International Workshop on
Refactoring. 34-41.

Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, Andrea
De Lucia, and Denys Poshyvanyk. 2013. Detecting bad smells in source code using
change history information. In 2013 28th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 268-278.

Fabio Palomba, Annibale Panichella, Andrea De Lucia, Rocco Oliveto, and Andy
Zaidman. 2016. A textual-based technique for smell detection. In 2016 IEEE 24th
international conference on program comprehension (ICPC). IEEE, 1-10.

A. Peruma. 2019. A Preliminary Study of Android Refactorings. In 2019 IEEE/ACM
6th International Conference on Mobile Software Engineering and Systems (MO-
BILESoft). 148-149. https://doi.org/10.1109/MOBILESoft.2019.00030

Anthony Peruma, Mohamed Wiem Mkaouer, Michael J Decker, and Christian D
Newman. 2018. An empirical investigation of how and why developers rename
identifiers. In Proceedings of the 2nd International Workshop on Refactoring. ACM,
26-33.

Eman Abdullah AlOmar, Anthony Peruma, Christian D. Newman, Mohamed Wiem Mkaouer, and Ali Ouni

A. Peruma, M. W. Mkaouer, M. J. Decker, and C. D. Newman. 2019. Contex-
tualizing Rename Decisions using Refactorings and Commit Messages. In 2019
19th International Working Conference on Source Code Analysis and Manipulation
(SCAM). 74-85. https://doi.org/10.1109/SCAM.2019.00017

Anthony Peruma, Christian D. Newman, Mohamed Wiem Mkaouer, Ali. Ouni,
and Fabio Palomba. 2020. An Exploratory Study on the Refactoring of Unit Test
Files in Android Applications. In Proceedings of the 4th International Workshop
on Refactoring (Seoul, South Korea) (IWoR 2020). Association for Computing
Machinery, New York, NY, USA.

Gustavo H Pinto and Fernando Kamei. 2013. What programmers say about
refactoring tools? an empirical investigation of stack overflow. In Proceedings of
the 2013 ACM workshop on Workshop on refactoring tools. 33-36.

Luca Rizzi, Francesca Arcelli Fontana, and Riccardo Roveda. 2018. Support for
architectural smell refactoring. In Proceedings of the 2nd International Workshop
on Refactoring. 7-10.

Danilo Silva, Nikolaos Tsantalis, and Marco Tulio Valente. 2016. Why we refactor?
confessions of github contributors. In Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering. ACM, 858-870.
Danilo Silva and Marco Tulio Valente. 2017. RefDiff: detecting refactorings in
version histories. In 2017 IEEE/ACM 14th International Conference on Mining
Software Repositories (MSR). IEEE, 269-279.

Gustavo Soares, Diego Cavalcanti, Rohit Gheyi, Tiago Massoni, Dalton Serey,
and Marcio Cornélio. 2009. Saferefactor-tool for checking refactoring safety. (01
2009).

Gustavo Soares, Rohit Gheyi, Dalton Serey, and Tiago Massoni. 2010. Making
program refactoring safer. IEEE software 27, 4 (2010), 52-57.

Ricardo Terra, Marco Tulio Valente, Sergio Miranda, and Vitor Sales. 2018. JMove:
A novel heuristic and tool to detect move method refactoring opportunities.
Journal of Systems and Software 138 (2018), 19-36.

Nikolaos Tsantalis, Victor Guana, Eleni Stroulia, and Abram Hindle. 2013. A
multidimensional empirical study on refactoring activity. In Proceedings of the
2013 Conference of the Center for Advanced Studies on Collaborative Research. IBM
Corp., 132-146.

Nikolaos Tsantalis, Matin Mansouri, Laleh M Eshkevari, Davood Mazinanian, and
Danny Dig. 2018. Accurate and efficient refactoring detection in commit history.
In Proceedings of the 40th International Conference on Software Engineering. ACM.
Michele Tufano, Fabio Palomba, Gabriele Bavota, Rocco Oliveto, Massimiliano
Di Penta, Andrea De Lucia, and Denys Poshyvanyk. 2015. When and why your
code starts to smell bad. In 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering, Vol. 1. IEEE, 403-414.

John W Tukey. 1977. Exploratory data analysis. Vol. 2. Reading, Mass.
Zhenchang Xing and Eleni Stroulia. 2006. Refactoring detection based on umldiff
change-facts queries. In 2006 13th Working Conference on Reverse Engineering.
IEEE, 263-274.

Zhenchang Xing and Eleni Stroulia. 2006. Refactoring practice: How it is and
how it should be supported-an eclipse case study. In 2006 22nd IEEE International
Conference on Software Maintenance. IEEE, 458-468.

Norihiro Yoshida, Tsubasa Saika, Eunjong Choi, Ali Ouni, and Katsuro Inoue.
2016. Revisiting the relationship between code smells and refactoring. In IEEE
24th International Conference on Program Comprehension (ICPC). 1-4.

https://doi.org/10.1109/MOBILESoft.2017.5
https://doi.org/10.1109/MOBILESoft.2017.5
https://doi.org/10.1145/3127005.3127016
https://doi.org/10.1145/1368088.1368146
https://doi.org/10.1109/MOBILESoft.2019.00030
https://doi.org/10.1109/SCAM.2019.00017

	Abstract
	1 Introduction
	2 Methodology
	3 Results & Discussion
	3.1 What is the distribution of experience among developers that perform refactorings?
	3.2 Would higher experience indicate higher refactoring activities?
	3.3 Research implications and future directions

	4 Threats to Validity
	5 Conclusion
	References

