
Finding the Needle in a Haystack: On the Automatic
Identification of Accessibility User Reviews

Eman Abdullah AlOmar
Rochester Institute of Technology

Rochester, New York, USA
eman.alomar@mail.rit.edu

Wajdi Aljedaani
University of North Texas

Denton, Texas, USA
wajdialjedaani@my.unt.edu

Murtaza Tamjeed
Rochester Institute of Technology

Rochester, New York, USA
mt1256@rit.edu

Mohamed Wiem Mkaouer
Rochester Institute of Technology

Rochester, New York, USA
mwmvse@rit.edu

Yasmine N. Elglaly
Western Washington University
Bellingham, Washington, USA

elglaly@wwu.edu

ABSTRACT
In recent years, mobile accessibility has become an impor-

tant trend with the goal of allowing all users the possibility
of using any app without many limitations. User reviews in-
clude insights that are useful for app evolution. However, with
the increase in the amount of received reviews, manually ana-
lyzing them is tedious and time-consuming, especially when
searching for accessibility reviews. The goal of this paper is to
support the automated identification of accessibility in user
reviews, to help technology professionals in prioritizing their
handling, and thus, creating more inclusive apps. Particularly,
we design a model that takes as input accessibility user re-
views, learns their keyword-based features, in order to make
a binary decision, for a given review, on whether it is about ac-
cessibility or not. The model is evaluated using a total of 5,326
mobile app reviews. The findings show that (1) our model
can accurately identify accessibility reviews, outperforming
two baselines, namely keyword-based detector and a random
classifier; (2) our model achieves an accuracy of 85% with rel-
atively small training dataset; however, the accuracy improves
as we increase the size of the training dataset.

CCS CONCEPTS
•Human-centered computing→ Empirical studies in acces-
sibility; Ubiquitous and mobile devices.

KEYWORDS
Mobile application, user review, accessibility, machine learn-
ing.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage and that copies bear this
notice and the full citation on the first page. Copyrights for components of this
work owned by others than ACMmust be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Reference Format:
Eman Abdullah AlOmar, Wajdi Aljedaani, Murtaza Tamjeed, Mo-
hamedWiemMkaouer, and Yasmine N. Elglaly. 2021. Finding the Nee-
dle in aHaystack: On theAutomatic Identification of Accessibility User
Reviews. In Proceedings of ACM Conference (Conference’17). ACM, New
York, NY, USA, 16 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Many mobile applications (apps) have poor accessibility

which makes it difficult for people with disabilities to use such
apps [5, 53, 55, 71]. Researchers presented several methods,
tools, frameworks, and guidelines to support developers in
creating accessible mobile applications [9, 11, 19, 47, 54, 64].
However, many software developers and designers still do
not incorporate accessibility into their software development
process due to lack of awareness or lack of resources, e.g., bud-
get and time, [15, 48, 51]. In this paper, we present a method
that can help software developers to quickly become aware of
specific accessibility problems with their apps that the users
encountered. Our method is based on automatically identify-
ing app reviews that users write on app stores, e.g., App Store1,
Google Play2 and Amazon Appstore3, where these reviews
express an accessibility-related feedback.

Analyzing app reviews was used by technology profession-
als to identify issues with their mobile apps [12, 37, 39]. How-
ever, accessibility in user reviews is rarely studied especially
for mobile applications [18]. Identifying accessibility-related
reviews is currently done using two main methods: manual
identification and automatic detection [18]. The manual iden-
tification approach is time consuming especially with the vast
number of reviews that users upload to the app stores, and
so it becomes impractical. The automated detection method
employs a string-matching technique as a predefined set of
keywords are searched for in the app reviews [18]. These key-
words were extracted from the British Broadcasting Corpo-
ration (BBC) recommendations for mobile accessibility [10].
While this method sounds more practical than the manual
one, it has its own drawbacks: the string-matching technique

1https://www.apple.com/ios/app-store/
2https://play.google.com/store
3https://www.amazon.com/mobile-apps/b?ie=UTF8&node=2350149011

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA AlOmar et al.

ignores that keywords derived from guidelines do not neces-
sarily match the words expressed in reviews posted by users.
This mismatch includes but not limited to situations when the
keywords are incorrectly spelled by users. More importantly,
the presence of certain keywords in a review does not neces-
sarily mean that the review is about accessibility. For example,
consider the following reviews from Eler et al. dataset [18]:

“This is the closest game to my old 2001 Kyocera 2235’s
inbuilt game ’Cavern crawler’. Everything is so simple
and easy to comprehend but that doesn’t mean that it
is easy to complete right off of the bat. Going into the
sewers almost literally blind (sight and knowledge of
goods in inventory) is a great touch too. Keep at it. I’ll
support you at least in donations.”

This review contains a set of keywords that could indicate
accessibility (e.g., “old”, “blind” and “sight”) but it is not an
accessibility review. In this review, the word “old” refers to a
device rather than a person. The words “blind” and “sight” re-
fer to knowledge of goods in the game rather than describing a
player’s vision. Therefore, the discovery of accessibility reviews
heavily relies on the context, and so, simply searching for their
existence in the review text is inefficient. Due to the overhead
of the manual identification, and the high false-positiveness of
the automated detection, these two methods remain impracti-
cal for developers to use, and so, accessibility reviews remain
hard to identify and to prioritize for correction. To address
this challenge, it is critical to design a solution with learning
capabilities, which can take a set of examples that are known
to be accessibility reviews, and another set of examples that
are not about accessibility but do contain accessibility-related
keywords, and learn how to distinguish between them. There-
fore, in this paper,weuse supervised learning to formulate the
identification of accessibility reviews as a binary classifica-
tion problem. This model takes a set of accessibility reviews,
obtained by manual inspection, in a previous study [18] as
input, we deploy state-of-the-art, machine learning models to
learn the features, i.e., textual patterns that are representative of
accessibility reviews. In contrast to relying on words derived
from guidelines, our solution extracts features (i.e., words and
patterns) from actual user reviews and learns from them. This
is critical because there is a semantic gap between the guide-
lines, formally written on an abstract level, and technology-
specific keywords. By features, we refer to a keyword or a set
of keywords extracted from accessibility-related reviews that
are not only important for classification algorithms, but they
can also be useful for developers to understand accessibility-
related issues and features in their apps. The patterns can be
about an app feature that supports accessibility (e.g., “font cus-
tomization”, “page zooming” or “speed control”); about assistive
technology (e.g., “word prediction”, “text to speech” or “voice
over”) as well as about disability comments (e.g., “low vision”,
“handicapped”, “deaf ” or “blind”). Particularly, we addressed
the following three research questions in our study:

RQ1: To what extent machine learning models can accurately
distinguish accessibility reviews from non-accessibility re-
views?

To answer this research question, we rely on a manually
curated dataset of 2,663 accessibility reviews, which we
augment with another 2,663 non-accessibility reviews.
Then we perform a comparative study between state-
of-the-art binary classification models, to identify the
best model that can properly detect accessibility reviews,
from non-accessibility reviews.

RQ2: How effective is our machine learning approach in identi-
fying accessibility reviews?
Opting for a complex solution, i.e., supervised learning,
has its own challenges, as models need to be trained,
parameter tuned, and maintained, etc. To justify our
choice of such solution, we compare the best perform-
ing model, from the previous research question, with
two baselines: the string-matching method, and the ran-
dom classifier. This research question verifies whether a
simpler solution can convey competitive results.

RQ3: What is the size of the training dataset needed for the
classification to effectively identify accessibility reviews?
In this research question, we empirically extract the min-
imum number of training instances, i.e., accessibility re-
views, needed for our best performing model, to achieve
its best performance. Such information is useful for prac-
titioners, to estimate the amount of manual work needs
to be done (i.e., preparation of training data) to design
this solution.

We performed our experiments using a dataset of 5,326 user
reviews, provided by a previous study [18]. Our comparative
study has shown that the Boosted Decision Treesmodel (BDTs-
model) has the best performance among other 8 state-of-the-
art models. Then, we compared our BDTs-model, against two
baselines: (1) string-matching algorithm and (2) a random
classifier. Our approach provided a significant improvement
in the identification of accessibility reviews, outperforming
the baseline-1 (keyword-based detector) by 1.574 times, and
surpassing the baseline-2 (random classifier) by 39.434 times.

The contributions of this paper are:
(1) We present an action research contribution that privi-

leges societal benefit through helping developers auto-
matically detect accessibility-related reviews and filter
out irrelevant reviews. Wemake our model and datasets
publicly available 4 for researchers to replicate and ex-
tend, and for practitioners to use our web service and
filter down their user reviews.

(2) We show that we need a relatively small dataset (i.e.,
1500 reviews) for training to achieve 85% or higher F1-
Measure, outperforming state-of-the-art string-matching
methods. However, the F1-measure score improves as
we add to the training dataset.

2 RELATEDWORK
It is crucial that mobile applications be accessible to allow

all individuals with different abilities to have fair access and

4https://smilevo.github.io/access/

https://smilevo.github.io/access/

Finding the Needle in a Haystack: On the Automatic Identification of Accessibility User Reviews Conference’17, July 2017, Washington, DC, USA

equal opportunities [27]. Prior studies investigated the accessi-
bility issues raised in Android applications [5, 66], and others
evaluated the accessibility of various websites [1, 17, 30, 69].
To the best of our knowledge, there is no study classifies user
reviews in Android applications using machine learning.

In this section, we highlight several previous works that pro-
foundly influenced our approach. We split the related works
into three sections: user review, which briefly highlights the
role of user reviews in app evolution; accessibility in user re-
view, focuses particularly on detection of accessibility in user
reviews; and classification of text documents, where we focus
on current approaches in the classification of text such as user
reviews by different taxonomies.

2.1 User Reviews
Many researchers concluded that reviews and ratings posted

by users on app store platforms can play an essential role in
apps’ evolution since most developers consider users’ reviews
when working on a new release [12, 37, 45, 49]. Maalej et al.
[39] proposed to consider user-input as first means of require-
ments elicitation in software development. Similarly, Vu et al.
[67] emphasized on the role of users in software lifecycle by
developing an approach to identify useful information from
users’ review. Moreover, Seyff et al. [59] suggested continu-
ous requirements elicitation from end-users’ feedback using
mobile devices.

Considering the fact that user reviews can be a powerful
driver to mobile app evolution, we are looking into whether
we can effectively detect accessibility reviews from users’ feed-
back. This is important because in a highly competitive market,
identifying accessibility issues from users’ reviews can help de-
velopers improve their apps in order to attract more customers
and provide better services to users with different abilities.

2.2 Accessibility in User Reviews
Even though user reviews can be a robust tool to mobile

apps evolution, and that even mature apps have many trivial
accessibility issues [19, 71], only 1.24% of mobile app users
report accessibility issues to app stores [18]. In other words,
98.76% of mobile app users do not post accessibility issues in
the form of reviews on app stores. In an effort to find whether
mobile app users post accessibility-related issues to app stores,
Eler et al. [18] investigated 214,053 mobile app reviews us-
ing a string-matching approach. They depend on a set of 213
keywords derived from 54 BBC recommendations [10] pro-
posed for mobile accessibility. In their work, they inspected
214,053 user reviews to identify reviews pertaining to acces-
sibility. Their approach classified a total of 5,076 reviews as
accessibility reviews. However, through a manual inspection
later, the researchers found that only 2,663 of the reviews were
really about accessibility. We used these 2,663 identified ac-
cessibility reviews as one of the two groups in our training
set required for a supervised machine learning. We created
the second group (i.e., non-accessibility reviews) from their
total dataset (i.e., 214,053). So far, this is one of the preliminary
studies related to the accessibility in mobile app user reviews.

2.3 Classification of Text Documents
Many studies classify app reviewsusing different taxonomies

[12, 16, 28, 41, 46, 49], for various purposes: detection of po-
tential feature requests, bug reports, complaints, and praises,
etc. Even though many of them identify reviews related to app
usability, there is no explicit mention to accessibility related
issues [18].

Unlike automatic approaches, classification of text docu-
ments using a set of predefined keywords has been vastly per-
formed across different domains in software engineering. For
instance, Eler et al. [18] relied on 213 keywords to identify
accessibility-related reviews. Strogylos and Spinelles [62] iden-
tified refactoring-related commits using one keyword “refac-
tor”. Similarly, Ratzinger et al. [52] used 13 keywords to detect
refactoring in commit messages. Later, Murphy-Hill et al. [43]
replicated Ratzinger’s work in two open-source software using
the 13 keywords Ratzinger used. However, they disproved the
previous assumption that commit messages in version history
of programs are indicators of refactoring activities. The rea-
soning behind their findings is that developers do not always
report refactoring activities as they might associate refactor-
ing activities with other activities such as adding a feature.
AlOmar et al. [2] have also explored how developers docu-
ment their refactoring activities in commit messages using
a variety of 87 textual patterns (i.e., keywords and phrases).
Similarly, we believe users can express accessibility concerns
without explicitly using any accessibility keywords from the
BBC guidelines as assumed by Eler et al. [18].

In contrast to the keyword-based approaches, we used an au-
tomatedmachine learning approach since learning approaches
outperform the accuracy of the keyword-based approach by
at least 1.45 times [3, 40]. On the other hand, a keyword-based
identification approach (i.e., relying on an existing set of pre-
defined keywords) could generally miss certain reviews, not
only because reviews left by users might not always use those
keywords to express an accessibility concern, but also because
a single word might not be enough to convey an accessibility
message. For example, the review “I hope someday we change size
of the fonts”; here the context provides an accessibility concern
even though the user is not explicitly using keywords such as
“disabled”, “blind” or “low vision”.

3 ACCESSIBILITY APP REVIEW
CLASSIFICATION

The main goal of this work is to automatically identify
accessibility-related reviews in a large dataset of app reviews.
Our approach takes a set of reviews as input and makes a bi-
nary decision on whether the review is accessibility pertaining
or not, i.e., classifying app reviews (for simplicity we refer to
them as accessibility reviews and non-accessibility reviews). To be
able to do so, we built a classification model using a corpus of
reviews and current classification techniques. We then used
the classification model to predict types of new app reviews.
Figure 1 provides an overview of the process used in the detec-
tion of accessibility reviews. Our approach follows five main
steps:

Conference’17, July 2017, Washington, DC, USA AlOmar et al.

Data Collection

Eler et al.
Dataset of

Accessibility
Reviews
(2,663)

Random
Selection of

Non-Accessibility
Reviews
(2,663)

Our
Dataset
(5,326)

Data Preparation

Tokenization

Lemmatization

Stop-Word Removal

Noise Removal

Case Normalization

 Feature Extraction

Feature Hashing

Filter-Based Feature
Selection

Model Selection Model Evaluation

Classifiers

N
on-A

ccessibility
R

eview

A
ccessibility R

eview

Cross-Validation

Boosted Decision Tree (BDT)

Decision Forest (DF)

Logistic Regression (LR)

Neural Network (NN)

Support Vector Machine (SVM)

Averaged Perceptron (AP)

Bayes Point Machine (BPM)

Decision Jungle (DJ)

Locally Deep SVM (LD-SVM)

Step
1

Step
2

Step
3

Step
4

Step
5

Mutual Information

Eler et al.
Dataset of

Non-
Accessibility

Reviews
(211,390)

Figure 1: Accessibility app review classification process.

(1) DataCollection:Weused a dataset of app reviews along
with their ground truth categories previously identified
through manual inspection [18] as input for training
purposes.

(2) Data Preparation: We applied data cleansing and text
preprocessing on this set to improve the reviews text for
the learning algorithms. Some of the text preprocessing
procedures we used are namely, tokenizing, lemmatiz-
ing, removing stop words, and removing capitalization.

(3) Feature Extraction:We used Feature Hashing [68] to ex-
tract features (i.e., words) from the preprocessed review
text to create a structured feature space.

(4) Model Selection and Tuning: We examined a total of
nine classification algorithms to evaluate the perfor-
mance of themodel for prediction. These classifiers were
chosen because they are commonly used for classifica-
tion of text such as app reviews [28, 31]. After training
and evaluating the model, we used a testing dataset to
challenge the performance of themodel. Since themodel
has already learned from the N-Gram vocabulary and
their weights discussed in Section 3.3 from the train-
ing dataset, the classifier output predicted-labels and
probability-scores for the testing dataset. Since an app
review is a plain text in our case, we follow the approach
provided by Kowsari et al. [33] that discusses trending
techniques and algorithms for text classification, similar
to [3, 4].

(5) Model Evaluation: We built a training set using the ex-
tracted features for the model to learn from.

3.1 Data Collection
The dataset, used for this study, and shown in Table 1, is a

collection of these 2,663 accessibility reviews, manually vali-
dated by Eler et al. [18]. The collected reviews are extracted
from across 701 apps, belonging to 15 different categories,
as shown in Figure 2. This dataset excluded all apps under
the Theming and System categories, since they usually do
not have any interface associated with them. Eler et al. [18]
started with collecting 214,053 reviews, then they performed
the string-matching using 213 keywords to filter down reviews
and keep only those who potentially may contains information
related to accessibility. These keywords are derived from 54
BBC recommendations proposed for mobile accessibility. The
string-matching reduced the reviews from 214,053 to 5,076 can-
didate accessibility reviews. However, the manual inspection
of these candidate reviews found that only 2,663 were true
positives.

Table 1: Statistics of the dataset.
Number of Apps 701
App Categories 15
All Reviews 214,053

Accessibility Reviews 2,663

In order for us to verify the previous manual labeling of
the reviews, we followed the process of Levin et al. [36] and
randomly selected a 9% sample of reviews, i.e., 243 out of the
2,663 reviews. This quantity roughly equates to a sample size
with a confidence level of 95% and a confidence interval of
6. Then we randomly added another 243 non-accessibility re-
views, to end up with a total of 486 reviews. Afterward, one
researcher labeled them. The selected data was not exposed

Finding the Needle in a Haystack: On the Automatic Identification of Accessibility User Reviews Conference’17, July 2017, Washington, DC, USA

to the researcher before. The review process was given a pe-
riod of 7 days, to avoid fatigue, and the researcher had the
opportunity to search online for any keywords they could
not understand, during the labeling process. Once the data
was labeled, we positioned our labeling against the original
labeling of the reviews, from the dataset. We used Cohen’s
Kappa coefficient [13] to evaluate the inter-rater agreement
level for the categorical classes. We achieved an agreement
level of 0.82. According to Fleiss et al. [21], these agreement
values are considered to have an almost perfect agreement (i.e.,
0.81˘1.00).

Multimedia
20.84%

Reading
17.95%

Internet
14.27%

Games
11.79%

Writing
9.01%

Phone and SMS 6.61%
Science and Education 4.28%

Time 3.30%
Sports and Health 3%
Development 2.25%
Connectivity 2.18%
Navigation 1.92%

Money 1.69%
Security 0.90%

Figure 2: Distribution of accessibility reviews per app cate-
gory.

To prepare training data for the binary classification of app
reviews we created two groups of app reviews: (1) reviews
indicating accessibility and (2) reviews not related to acces-
sibility. For the accessibility reviews, we used the set of 2,663
reviews previously identified and validated as accessibility
reviews through manual inspection by Eler et al. [18]. Since
class starvation or an imbalanced training set (i.e., not having
equal size of both groups) could decrease the performance
of a classification model [35, 36], we need to select an equal
number of non-accessibility reviews for the training. To effi-
ciently train a classifier, it is important for the negative set to
be as close as possible to the positive set. Therefore, we chose
the negative set to be populated using the discarded reviews
of the original authors, during their manual process. These
discarded reviews tend to contain some keywords that are
relevant to accessibility, but they were found to be conveying
another meaning, and that is what we want our model to learn.
Since the subset of discarded reviews was 2,413, we randomly
selected reviews from the Eler et al. [18] remaining reviews
dataset, so that these reviews are also extracted from the same
apps, and most likely to contain some keywords that overlap
with our true positive set.

To decide on the number of reviews necessary for training
purposes, we reviewed the thresholds used in several text clas-
sification studies. The highest number of text documents used
in comparable studies [3, 35, 36] was around 2000 text docu-
ments. Since our goal was to provide the model with sufficient
reviews that could represent all possible accessibility topics,
unlike existing works we chose a total of 5,326 reviews for the
model creation and validation. However, we did evaluate our
model with different sizes of training sets to understand the
size of the training set that yields the best results. We report
the results of our evaluations with regard to the testing of
different training sizes in Section 4.

3.2 Data Preparation
Upon completion of the data collection phase, we applied

a common approach explained in [33] for text preprocess-
ing, similar to [3, 4]. For a model to classify text documents
correctly, the text needs to be cleaned and preprocessed. To
preprocess the app reviews text, we used natural language pro-
cessing techniques, built-in the Microsoft Azure [7], such as
tokenizing, lemmatizing, removing stop words, and removing
capitalization.

Tokenization: is the process of splitting natural text data
into tokens, or meaningful elements, that contain no white
space. We tokenized app reviews by breaking them into their
constituent set of words.

Lemmatization: is the process of getting the basic form of a
word by either removing the suffix of a word or replacing the
suffix of a word with a different one. It is also the process of
reducing the number of unique occurrences of similar words.
We used this preprocessing technique to represent words in
their canonical form in order to reduce the number of unique
occurrences of similar text tokens.

Stop-WordRemoval:We removedwords such as (is, am, are,
if, for, the, etc.) that do not play any good role in classification.

CaseNormalization: Sincewewanted the samewordswith
different font cases (e.g., “Accessibility” and “accessibility”) to
be treated as the sameword,we converted original review texts
to lower case. This type of text cleansing helps us avoid having
repeated features differing only in the letter case. We realize
that in some cases a user can identify themselves as ‘Deaf’ with
uppercase ‘D’ to express their cultural identity in their review
which is different from ‘deaf’. However, as our classifier is a
binary classifier that only distinguishes accessibility reviews
from the rest, the words ‘Deaf’ and ‘deaf’ will yield the same
classification result. Hence, case normalization in this context
is safe and will not overrule users’ expressions.

Noise Removal:We removed any noise that could deterio-
rate classification performance and confuse the model when
learning. Examples of the noise we removed include removing
special characters, numbers, symbols, email addresses and
URLs.

3.3 Feature Extraction
After cleansing and preprocessing the reviews text, we ex-

tracted features from the preprocessed text that matter the

Conference’17, July 2017, Washington, DC, USA AlOmar et al.

Hash Function

Blind Full Feature Set

XXXX XXIdentify Useful
Features

Selected Feature
Set

Filter-Based Feature Selection
Keys Hashes

Deaf

Flicker

Impaired

01

02

03

04

05

06

Feature Hashing

Figure 3: An example of feature hashing and feature selection process in feature extraction stage.

most in distinguishing between the two classes in classifica-
tion. Particularly, we used the Feature Hashing technique for
feature extraction. Feature Hashing is a technique that oper-
ates on high-dimensional text documents used as input in a
machine learning model, to map string values directly into
encoded features and represent them as integers [60, 68]. This
technique helps to reduce dimensionality and to make the
feature weights lookup more efficient. Internally, the Feature
Hashing technique creates a dictionary of N-Grams. We used
bigrams in our classification since it greatly improves the per-
formance of text classification [63]. Generally, N-Grams have
more meaning and semantic than isolated words. For example,
the word “font” does not provide enough information by itself.
However, when N-Gram features extracted from reviews, e.g.,
“small font”, “font customization”, “font size”, etc., the word “font”
can indicate accessibility reviews. We discuss in details the
features of our model (i.e., keywords and bigrams) in Section
4. We used Mutual Information filter-based feature selection.
Mutual Information is a technique that measure how much a
variable contributes towards reducing uncertainty about the
value of another variable in order to identify features with the
greatest predictive power. In fact, this feature set is the training
set that the model learns from. In Figure 3, we illustrate how
Feature Hashing applied to the text which was being trans-
formed to a dictionary, as well as the process of the filter-based
feature selection.

3.4 Model Selection and Tuning
Selecting an appropriate classifier for optimal classification

is a challenging task by itself [20]. In this study, we are tackling
a two-class classification problem as we are categorizing app
reviews into two groups, accessibility and non-accessibility.
Because we already have a predefined set of classes, our ap-
proach relies on supervised machine learning algorithms to
assign each review into one of the two categories. We tested
nine different classification algorithms as to see which one pro-
vides the best results in the context of accessibility and app re-
views classification. The tested classifiers are: Logistic Regres-
sion (LR), Decision Forest (DF), Boosted Decision Tree (BDT),

Neural Network (NN), Support Vector Machine (SVM), Aver-
aged Perceptron (AP), Bayes Point Machine (BPM), Decision
Jungle (DJ), and Locally Deep SVM (LD-SVM). We adopted
these classifier algorithms because they are commonly uti-
lized in the literature of software-related text classification
[3, 23, 34, 38, 44, 72]. Below is a brief description of each of the
classification algorithms used in this study.

• Logistic Regression (LR)[6] is a linear classifiers that
predicts the probability of an outcome by fitting data to
a logistic function.

• Decision Forest (DF)[50]: is a tree-based learner that
builds many classification trees. A specific classification
is associated with each tree produces. To classify a new
object, DF chooses the classification that has the most
votes over all other trees.

• BoostingDecisionTree (BDT)[22]: is an ensemble learn-
ing method in which the second tree corrects for the er-
rors of the first tree, the third tree corrects for the errors
of the first and second trees, and so forth. Predictions
are based on the entire ensemble of trees together that
makes the prediction.

• Neural Network (NN)[24]: is a set of interconnected
layers. The inputs are the first layer that are connected
to an output layer by an acyclic graph.

• Support Vector Machine (SVM) [70]: is a learner that
constructs hyperplane(s) in n-dimensional space.

• Averaged Perceptron (AP)[14] is a simple version of
Neural Network. The inputs are classified into several
outputs based on a linear function, and then combined
with a set of weights that are derived from the feature
vector.

• Bayes Point Machine (BPM)[26]: is an algorithm that
uses a Bayesian approach to linear classification called
the “Bayes PointMachine”. This algorithmapproximates
the optimal Bayesian average by choosing one “average”
classifier, the Bayes Point.

• Decision Jungle (DJ)[61]: is a recent extension to de-
cision forests. It consists of an ensemble of decision di-
rected acyclic graphs (DAGs).

Finding the Needle in a Haystack: On the Automatic Identification of Accessibility User Reviews Conference’17, July 2017, Washington, DC, USA

• Locally Deep SVM (LD-SVM)[29]: is a classifier that
has been developed for an effencient non-linear SVM
prediction.

We compared all the nine classifiers based on their common
statistical measures such as precision, recall, accuracy, and
F1-measure. These experiments were performed on the Azure
ML platform because it provides a built-in web service once
the classification model is deployed. We report the results of
our classifier comparison and evaluation in Section 4.

We use grid search cross validation [56], a tuning method
that performs exhaustive search over specified parameter val-
ues for an estimator, for tuning of our selected ML models. In
order to facilitate the replication of our results, we provide the
selected main parameters for ML techniques as shown in Table
2.

3.5 Model Evaluation
We assess the performance of our selected models based on

the following four measurement aspects:
• Precision = tp

tp+ f p : is a statistic that calculates the accu-
rate number of correct predictions out of all the input
sample.

• Recall = tp
tp+ f n : is a statistic that calculates the accurate

number of positive predictions that was actually ob-
served in the actual class.

• Accuracy = TP+TN
TP+TN+FP+FN : is a statistic that calculates

the accurate number of
• F1-measure = 2·P·R

P+R : is a a statistic that calculates the
accuracy from the precision and recall.

Here TP denotes True Positive, TN denotes True Negative,
FP denotes False Positive, and FN denotes False Negative.
These metrics participation in measurement for a classifier’s
output.

• True Positive (TP): This parameter determines the pre-
dictions labeled correctly by the classifier as positive.

• True Negative (TN): This parameter determines the
correct number of negative predictions.

• False Positive (FP):This parameter determines the num-
ber of instances (negatives) that were presumed as pos-
itive instances by the classifier by mistake.

• False Negative (FN): This parameter determines the
number of positive instances that were falsely assumed
to be as negative instances by the classifier.

Cross-Validation.Weapplied a 10-fold cross-validation tech-
nique to evaluate the variability and reliability of our models.
For each model, we split our dataset into 10 folds containing
the equal size of app reviews. Then, we performed 10 evalua-
tions with various testing datasets wherein each evaluation 9
folds were used as a training dataset and the other fold was
used as a testing dataset. Put differently, unlike other approach
that is dependent on just one train-test split, when evaluating
our model using 10-fold cross-validation, we train on multiple
train-test splits in which one fold is left as a holdout data set,
so it is unseen during the training. This approach is consid-
ered the preferred method as it gives us a better indication

of how well our model performs on unseen data. We aggre-
gated the results of the 10 evaluations and reported the average
performance tested with multiple models.

4 EXPERIMENTAL RESULTS AND
EVALUATION

In this section, we review the results of our experiments
to evaluate the performance of our approach. For evaluating
various accessibility classification models, we used standard
statisticalmeasures (Precision,Recall,Accuracy, F1-measure). Us-
ing the evaluation results, we provide answers to our research
questions.

RQ1. To what extent machine learning models can accu-
rately distinguish accessibility reviews fromnon-accessibility
reviews?

We conducted an experiment to determine if the automatic
classification of user reviews using machine learning tech-
niques can be performed with high accuracy. We wanted to
understand the opportunities and limitations of the machine
learning technique in automatically detecting accessibility re-
views.

We compared the nine classification algorithms tested in
this study with respect to precision, recall, accuracy and F1-
measure and reported the results as shown in Figure 4. The
accuracy and F1-measure of the Boosted Decision Trees model
(BDTs-model) is clearly higher than its competitors for the clas-
sification of accessibility reviews. The BDTs-model with the ac-
curacy of 90.6% and F1-measure of 90.7%, outperformed other
classification algorithms. Figure 4 also shows that the Bayes
Point Machine (BPM) and Averaged Perceptron (AP) with
F1-measure of 88.7% and 88.3% respectively, yielded higher
predictive power after the Boosted Decision Trees.

The fact that BDTs-model achieved top performance rate can
be explained by the fact that a boosted decision tree aggregates
several learnings since it is an ensemble learning method. In
the ensemble method, the errors of the first tree are fixed by
the second tree, and the errors of the second tree are fixed by
the third, and so on. In this method, the entire ensemble trees
together form the prediction.

To further understand how these models distilled the text
of the reviews into features, we extract keywords that were
trending in our dataset, that we enumerate in Table 3. It is
important to note that the majority of these keywords were
identified by the BBC recommendations for mobile accessi-
bility, however, not all of these keywords were found to be
useful for our best performing classifier, i.e., BDTs-model. In
Table 3, we report in bold, the features that were influential in
increasing the accuracy of the trained Boosted Decision Trees.
Such finding does not necessarily deny the relevance of the
remaining keywords in describing accessibility related issues,
but the fact that they were not selected, indicates their exis-
tence in non-accessibility related reviews. Keywords such as
“dark mode” or “mute”, while being used in the BBC guidelines,
are also known to be used in general usability contexts. For
example, the keyword “mute” tends to be frequently used in

Conference’17, July 2017, Washington, DC, USA AlOmar et al.

Table 2: Summary of the hyperparameter in machine learning algorithm.

Classifier Hyperparameter Default Description
optimiz_tol 1E-07 Optimization tolerance

LR 1_weight 1 L1 regularization weight
L2_weight 1 L2 regularization weight
memory_L_BFGS 20 Memory size for L-BFGS
n_estimators 8 Number of decision trees

DF max_depth 32 Maximum depth of the decision trees
n_samples_leaf 125 Number of random splits per node
min_samples_split 1 Minimum number of samples per leaf node
max_n_leaf 20 Maximum number of leaves per tree

BDT min_samples_leaf 10 Minimum number of samples per leaf node
learning_rate 0.2 Learning rate
n_tree 100 Number of trees constructed
n_nodes 100 Number of hidden nodes
learning_rate 0.1 Learning rate

NN n_learning_rate 100 Number of learning iterations
learning_rate_weights 0.1 Initial learning weights diameter
momentum 0 Momentum
n_iter 1 Number of iterations

SVM Lambda 0.001 Lambda
learning_rate 1 Learning rate

AP m_iter 10 Maximum number of iterations
BPM n_training_iter 30 Number of training iterations

n_estimators 8 Number of decision directed acyclic graphs
DJ max_depth 32 Maximum depth of the decision directed acyclic graphs

max_width 128 Maximum of the decision directed acyclic graphs
n_optimiz 2048 Number of optimization steps per decision directed acyclic graphs layer
max_depth 3 Depth of the tree
lam_weight 0.1 Lambda weight

LD-SVM n_theta 0.01 Lambda Theta
n_theta_Prime 0.01 Lambda Theta Prime
n_sigmoid 1 Sigmoid sharpness
n_iter 15000 Number of iterations

reviews related to media and video players, where sound is
one of the main features of the app.

Further, on a more qualitative sense, we examine the set of
frequently occurring bigrams for the keywords (reported in
Table 3) that are strongly correlated to the accessibility review
. Bigram corresponds to a sequence of two adjacent words in a
sentence to help better understanding the context for the given
terms. By analyzing the natural language in the accessibility
review, we obtain more specific accessibility review-related
terminology. Table 4 presents the frequently occurring bigrams
in the review. Looking at these terms, we see that developers
are either commenting on the features of the apps (e.g., “easily
accessibile”, “good text reflow”, “great for visually impaired”),
or they are discussing accessibility issues with their products
pointing out that the apps need to be improved (e.g., “terribly
hard to see”, “no visual cue”, “cant read”).

The findings, illustrated in Tables 3 and 4 indicate a potential
variation of how users typically state their accessibility needs.
While it seems intuitive, there are no studies that focused on

extracting such information in a structuredmanner to facilitate
the identification of such accessibility problems by the app
maintainers.

Although a high classification performance of our BDTs-
model has been demonstrated in Figure 4, there are some
limitations that lead BDTs-model to output some misclassified
reviews as illustrated in Table 5. According to our thorough
analysis, we notice that the misclassification of our model can
be related to:

• False positive instances caused by the format of report-
ing user perspective of the apps. The examples in the
table show that different expression about the apps like
“simple” or “headache” can be confusing to the classifier
and hence it misclassified these reviews.

• False negative instances caused by the format of report-
ing a specific feature of the apps. As shown in the table,
the users commented on a specific feature such as “func-
tioning reader” and “caller ID”. The BDTs-model will

Finding the Needle in a Haystack: On the Automatic Identification of Accessibility User Reviews Conference’17, July 2017, Washington, DC, USA

0
.8

8
1

0
.8

8

0
.9

0
6

0
.8

5
4

0
.8

6
9

0
.8

8
6

0
.8

8
9

0
.8

7

0
.8

7
3

0
.9

2

0
.9

1
4

0
.8

9
8

0
.8

2
5

0
.8

9
2 0

.9
0

3

0
.9

0
6 0
.9

1
4

0
.8

8
2

0
.8

3
4

0
.8

3
8

0
.9

1
6

0
.9

0
1

0
.8

4

0
.8

6
4

0
.8

6
9

0
.8

1
8

0
.8

6

0
.8

7
5

0
.8

7
4

0
.9

0
7

0
.8

6 0
.8

6
5

0
.8

8
3

0
.8

8
7

0
.8

6
3 0
.8

7
1

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

LOGISTIC
REGRESSION

DECISION
FOREST

BOOSTED
DECISION

TREE

NEURAL
NETWORK

SUPPORT
VECTOR

MACHINE

AVERAGED
PERCEPTRON

BAYES POINT
MACHINE

DECISION
JUNGLE

LOCALLY
DEEP SVM

P
E

R
F

O
R

M
A

N
C

E

MODELS

Accuracy Precision Recall F1-measure

Figure 4: Comparison between binary classifiers, in terms of precision, recall, accuracy, and F1-measure.

wrongly classify it because these could be seen as an
accessibility-related features.

It is worth noting that the above misclassifications do not have
a large influence on the overall performance of the BDTsmodel.
Only a small number of reviews are wrongly classified by our
model.

Summary. The Boosted Decision Trees model, with an
accuracy of 90.6% and an F1-measure of 90.7%, is the
best performing model in the binary classification of
accessibility reviews.

RQ2. How effective is our machine learning approach in
identifying accessibility reviews?

The main goal of this study is to propose an automatic ap-
proach for identification of accessibility reviews that can effec-
tively outperform current state-of-the-art baselines: Keyword-
based (i.e., also called pattern-based or string-matching) [18]
and Random classifier [40]. Existing studies that have applied
machine learning techniques in similar contexts (i.e., text clas-
sification) usually evaluate their approach using different clas-
sifiers. To compare their approach against others, they con-
sider the keyword-based approach. To our knowledge, the
only study that considers additional approach (i.e., random
classifier) is the study by Da Silva et al. [40]. Thus, we con-
sider keyword-based and random classifier to compare against
our approach. Answering this question is important to under-
stand if the detection of accessibility reviews is a learning

problem. We hypothesize that learning algorithms can outper-
form string-matching algorithms. To examine if the hypothesis
holds true, we chose to investigate the following two baselines,
and compared them with our BDTs-model.

Baseline 1.Keyword-basedApproach.The keyword-based
(string-matching) approach for identifying accessibility re-
views is suggested by Eler et al. [18]. In their work, they in-
spected 214,053 user reviews to identify the reviews pertaining
to accessibility. Their string-matching approach classified a to-
tal of 5,076 reviews as accessibility reviews. However, manual
verification of the 5,076 reviews later found that only 2,663 of
the reviews were correctly identified [18].

To calculate statistical metrics for baseline 1, we used a
set of 5,326 reviews (cf., set of 2,663 accessibility reviews,
from Table 1, and another 2,663 non-accessibility reviews, se-
lected from the same apps). Then, we manually inspected
these reviews to determine true positives (TP), true nega-
tives (TN), false positives (FP), and false negatives (FN). True
positives are when the keyword-based approach correctly de-
tected accessibility reviews, and true negatives are when non-
accessibility reviews are correctly identified. False positives
are the reviews identified as accessibility reviews while they
are not; and false negatives are the reviews identified as non-
accessibility reviews while they are accessibility reviews. Since
we already had the reviews labelled, we were able to count TP,
TN, FP and FN.

Baseline 2. Random Classifier. Similar to Da Maldonado
et al. [40], we consider Random classifier as one of the base-
lines to compare our approach to. The precision of the random

Conference’17, July 2017, Washington, DC, USA AlOmar et al.

Table 3: List of keywords trending in the 5326 reviews. Keywords in bold are found to be strongly correlated to accessibility
reviews by our model.
Keywords
(1) dark mode (16) adjustable (31) voice command (46) colour coding (61) captcha
(2) zoom (17) blind (32) text-to-speech (47) transcript (62) audio description
(3) customization (18) header (33) eyestrain (48) default language (63) container
(4) font size (19) overlap (34) strain (49) older device (64) distinguishable
(5) volume (20) pause button (35) background image (50) visual cue (65) input type
(6) cannot see (21) flicker (36) screen reader (51) grouped (66) keyboard language
(7) accessibility (22) spacing (37) change language (52) seizures (67) page refresh
(8) readable (23) migraine (38) small widget (53) select language (68) page title
(9) change font (24) input method (39) stop button (54) understandable (69) sign language
(10) hard to see (25) autoplay (40) impaired (55) vibration feedback (70) svg image
(11) background color (26) metadata (41) text reflow (56) actionable (71) switch device
(12) light mode (27) too bright (42) timeout (57) audio cue (72) touch target
(13) mute (28) haptic (43) consistency (58) missing label (73) adjust size
(14) contrast (29) scaling (44) epilepsy (59) navigable (74) adjust colour
(15) subtitle (30) control key (45) assistance (60) verbose

Table 4: A sample of frequently occuring bigrams for the keywords that are strongly correlated to accessibilty review by our
model.

Bigram
cannot see accessibility readable hard to see
cannot see anything easily accessible readable text very hard to see
cannot see worksheet more accessible document reader too hard to see
cannot see number great accessibility easier reading really hard to see
cannot see status accessibility suite can read terribly hard to see
still cannot see accessibility screen cant read hard to see theme
blind header flicker voice command
blind user theme header screen flicker voice command search
color blind custom header flicker taskbar use voice command
supports blind size header flicker background voice commands works
impaired / blind adjust header heavy flickering simple voice command
totally blind transparent header constant flickering custom voice command
text-to-speech screen reader impaired text reflow
verbose text-to-speech screen reader accessibility visually impaired text reflow feature
text-to-speech works accessibility screen reader vision impairment activate text reflow
text-to-speech feature talkback screenreader visual impairment good text reflow
text-to-speech news small-screen reader great for visually impaired has text reflow
transcript visual cue navigable audio description
transcript title no visual cue navigable bar turns on audio description
recording / transcription some visual cue navigable button
zooming and transcript provide a visual cue navigable app
transcription not found easily navigation

classifier technique is calculated by dividing the number of
accessibility reviews by the total number of user reviews (i.e.,

2663
214053 = 0.012). When it comes to recall, there is only 50% prob-
ability for a review to be classified as an accessibility review
since there are two possible classifications available. Finally,
the F1-measure of baseline 2 is calculated as 2 ∗ 0.012∗0.5

0.012+0.5 = 0.023.

Using the values of TP, TN, FP and FN, we calculated the
Precision, Recall, and F1-measure, for both baselines. Table
6 shows the standard statistical measures of the three ap-
proaches, also the performance improvements achieved by
our BDTs-model compared to the other two methods.

Finding the Needle in a Haystack: On the Automatic Identification of Accessibility User Reviews Conference’17, July 2017, Washington, DC, USA

Table 5: Examples of the misclassification case of our BDTs-model.

Type Example

False Positive
“Simple and easy to use”

“This app works well - especially “lucid dream” - i still remember my dream last week.
Amazing! But i dont like the side effects - like headache and other emotional thing.”

False Negative

“Beautiful Functioning Reader”

“Thank you for all your hard work in making this app for us to use. And to offer it to us for free
is amazing. I use this app everyday, I got all my friends and family using it too. Thank you so
much! I can only think of one thing that could make this app better, if you could add caller ID
with name, and make it so users could turn it on or off, this would be great. Even without that,
this app is great.”

As can be seen from Table 6, F1-measure obtained by thema-
chine learning approach is much higher than the other meth-
ods. F1-measure achieved by the machine learning approach
is 0.90, while F1-measure values using keywords and random
classifier are 0.576 and 0.023 respectively. Table 6 shows that
our approach outperforms the keyword-based approach by
1.574 times and the random classifier by 39.434 times when
identifying accessibility reviews. To better understand the per-
formance of the string-matching method, we have extracted
examples reviews that were wrongly classified, as accessibility:

Review 1. “Good to have your files easily accessible.
Would like integration of caldav/ carddav”

Review 2. “Very useful application. Gmail users must
go for it blind eyes”

The existence of keywords such as “accessible” and “blind
eyes”, are string-matched to the keywords considered as acces-
sibility by the guidelines, and so, the keyword-based approach
will flag their corresponding reviews as accessibility. However,
the first review (i.e., Review 1) refers to the new feature that al-
lows user files to be accessible more efficiently and requests the
integration of a protocol for the synchronization of calendars.
Similarly, the second review (i.e., Review 2), is praising an
app that synchronizes Gmail calendar with Outlook calendar,
and the user’s expression of "going with blind eyes", refers to
their satisfaction, and not to what would be considered by the
string-matching method as an accessibility issue.

To determine the different cases of when the keyword-based
approach fails, we evaluated 592 reviews, a statistically signifi-
cant sample with a confidence level of 99% and a confidence
interval of 5%. By analyzing the selected reviews, we iden-
tified the following reasons behind the failure cases of the
string-matching approach:

• Keyword Misspelling. This category depicts the case
when accessibility aspects of the mobile application are
addressed by the users using misspelled keywords. This
case can be illustrated in the following example: “ Font
size of lowercase letters is sooosmall! How to change it? It

should be like on google keybord when you change capital/low-
ercase mode - lowercase letters have almost the same size as
capital. It’s much easier for your eyes!”. The keywordmatch-
ing approach can miss any word with a typo or with
inproper spacing, such as “keybord” or “sooosmall”. Mis-
spellings are frequent in app user reviews, since mobile
writing is known to be more prone to typos.

• Keyword Variation. This category shows the case in
which users use different part-of-speech (POS) of the
accessibility-related keywords reported in Table 3. As
shown in the following review: “very accessible as a blind
user thank you”, the user used the adjective form (“ac-
cessible”) of the word accessibility.

• Expression Variation. This category represents cases in
which users use different expressions of the keywords
listed in Table 3 to address accessibility aspects of the
apps. This case is best illustrated in the following ac-
cessibility review: “still getting responses from the wrong
people and noticed that when in night mode with pure black
background - when you try to delete a message the yes option
is completely black so impossible to see”. As can be seen,
the expression “impossible to see” is used instead of the
keyword “cannot see” to represent the user perspective
on the problem.

Summary. The Boosted Decision Trees model outper-
forms the current state-of-the-art approaches in the
classification of accessibility reviews. We obtained an
F1-measure score of 90.7% with an improvement of
1.574x and 39.434x over the keyword-based and ran-
dom classifier approaches respectively.

RQ3:What is the size of the training dataset needed for the
classification to effectively identify accessibility reviews?

So far, we showed that our machine learning approach can
accurately identify user reviews that pertain to accessibility.
However, the performance of a classifier relies on the size of
the training data. At the same time, creating a training dataset

Conference’17, July 2017, Washington, DC, USA AlOmar et al.

Table 6: Comparison in approaches used to the baselines in our study.

Our approach Keyword-based Random classifier
Precision Recall F1 Precision Recall F1 Precision Recall F1

Classification 0.898 0.916 0.907 0.996 0.405 0.576 0.012 0.500 0.023
Improvement – – – 0.901 x 2.261 x 1.574 x 74.833 x 1.832 x 39.434 x

is a challenging and time-consuming task. Thus, the question
is: What is the size of the training dataset needed to effectively
classify user reviews? If an approach requires a very large
training dataset than it will require a considerable time and
effort to be applied to other similar contexts. However, if less
training dataset is required to effectively classify accessibility
reviews, then our approach can be applied and extended with
little efforts.

To answer this research question, we incrementally added
reviews to the training dataset and evaluated the performance
of the classification. We began by creating a large training
dataset that contains equal size of accessibility reviews and
non-accessibility reviews. Then, we used cross validation tech-
nique, which is a technique that partitions the original dataset
into a training set to train the model, and a test set to evaluate
it using number of folds [32]. In this study, we divided the
dataset into 10 folds making sure they contain equal size of
both classes. Next, we tested our approach using a 10-fold
cross-validation technique using 9 folds for training and 1 fold
for testing. Since we wanted to monitor the performance of
our classifier as the training dataset size increased, we incre-
mentally added batches of 100 reviews until we used all of
our training data (e.g., 5,326 reviews). It is important to note
that we considered the equal size of accessibility reviews and
non-accessibility reviews with batches incrementally added to
the training dataset. We computed the F1-measure value for
each iteration (e.g., after adding batches of new reviews to the
training set). We recorded the number of reviews needed to
achieve at least an F1-measure of 80% to 90%.

Figure 5 shows F1-measures calculated when detecting ac-
cessibility reviews, while incrementally adding batches of re-
views to the training dataset. Our results show that the highest
F1-measure (i.e., 0.907) was achieved with 5,326 reviews (our
total training dataset) and the lowest F1-measure value (i.e.,
0.630) was achieved with 100 reviews. Our results also show
that 80 to 90 percent F1-measure is achieved with 400 to 5000
reviews in the training dataset. Such that, we need only 400
reviews to get around 80% F1-measure and we need at least
1500 reviews to get 85% or higher, while with 5000 reviews
we got around 90% F1-measure. Finally, we found that the
F1-measure score improves as we add to the training dataset.

Summary. We find that we need a relatively smaller
training dataset (i.e., 1500 reviews) to get 85% or
higher F1-measure. The F1-measure score improves
as we add to the training dataset.

5 DISCUSSION
We presented a new approach that identifies app reviews

with accessibility concerns.We compared our new approach to
the current state-of-the-art methods. Based on these findings
we discuss implications that can be theory-based and practice-
based. Theory-based implications show how this study can
further advance the research on accessibility reviews. Practice-
based implications show how our model supports our com-
munity in building and maintaining accessible mobile apps.

Implication 1: App reviews are rich source of information
that can bemined to identify specific accessibility problems
with the mobile app. There are so many accessibility guide-
lines that developers and designers can find it difficult to test
for all of these guidelines. Additionally, adhering to these
guidelines does not necessarily guarantee the accessibility
of the said app. Also, usability testing with different groups
of people with disabilities, e.g., blind or deaf, can be infeasi-
ble especially for medium and small-scale companies. One
way to discover accessibility problems which prior testing did
not reveal is to listen to the users and learn from the reviews
they wrote. Our approach can aid technology professionals to
quickly spot accessibility problems with their app.

Implication 2: Accessibility as part of mobile apps main-
tenance and evolution. There exist accessibility testing tools
and methods that are designed to support the implementation
and testing phases of the software. However, there are no tools,
to the best of our knowledge, that supports software accessi-
bility in the maintenance phase. With changes made to an app,
either for adding a feature or fixing a bug, accessibility can
be at risk. Also, with updates made to the phone’s operating
system or the installed assistive technology, the accessibility
of an app may deteriorate. We call for innovative methods
that can support technology professionals in maintaining the
accessibility of their app after its release. Our approach in
analyzing app reviews offers an opportunity for developers
and designers in detecting accessibility pitfalls based on their
users’ written feedback. However, with the tremendous num-
ber of reviews developers receive on a daily basis, it becomes
impractical to manually read through them and identify po-
tential issues related to their new release. Adding our model
to the pipeline, will alleviate the manual overhead of look-
ing up accessibility related reviews, and so developers can
quickly locate their corresponding issues, and add them to
their maintenance pipeline.

Finding the Needle in a Haystack: On the Automatic Identification of Accessibility User Reviews Conference’17, July 2017, Washington, DC, USA

1000 2000 3000 4000 5000
0

20

40

60

80

100

Number of reviews used in the training dataset

F1
-m

ea
su

re
(%

)

Figure 5: F1-measure achieved by incrementally adding training data size for binary classification.

Implication 3: Understanding users’ language in express-
ing their accessibility concerns.Whenwe compared our BDTs-
model to the keyword-based detector, we found that some ac-
cessibility reviews did not contain the accessibility keywords
that were driven from accessibility guidelines [18]. This indi-
cates that users voice their accessibility feedback using “user
taxonomy” which may or may not echo the technical and
professional terms used in accessibility standards. Further
research is needed to understand how users describe mobile
accessibility issues. By learning the accessibility “user taxon-
omy”, we can improve our BDTs-model, which will lead to
enhanced discovery of accessibility reviews.

Implication 4: The interplay between developers and de-
signers, accessibility experts, and users.Accessibility experts
establish guidelines and design methods in support of creat-
ing accessible software. Technology professionals often are
not able to digest all these guidelines and often find existing
resources lacking. This situation yielded to the existence of soft-
ware products that are inaccessible to people with disabilities.
The effective involvement of people with disabilities in this
process can help bridging the communication gap between
accessibility experts and developers and designers. By giving
users the opportunity to lead the prioritization of accessibility
issues based on their usage experience, mobile apps accessibil-
ity can be improved in a more meaningful way for people with
disabilities. Analyzing app reviews is one way to give users
the lead in determining which accessibility issue should be
fixed in the next release. Analyzing app reviews can also offer
insights to accessibility experts on users’ accessibility needs
right from the field, which will be more realistic than results
collected from controlled lab studies.

Implication 5: Direct and immediate apps filtering bene-
fit for end users. People find online reviews helpful in making
purchase decisions [8]. Peer comments help users become
aware of the limitations of reviewed products [42]. Currently,

on mobile applications stores, e.g., App Store and Google Play,
users can read all reviews, sort them by most helpful or most
recent. However, mobile application stores provide no means
to filtering reviews based on relevance to specific quality met-
rics, e.g., accessibility. This lack of filtering pushes users to
download the app first and then experience its accessibility,
leaving no room for benefiting from peer comments. Some-
times, apps suffer from accessibility regression giving users an
unpleasant surprise with an updated app that is less accessi-
ble than its former version [65]. We call on mobile application
stores to take action and allow users to filter reviews based on
relevance to accessibility.

Implication 6: Pushing the boundaries of Accessibility
testing. Current accessibility testing strategies are human in-
tensive, and therefore become expensive and impractical, as
most developers struggle to find the appropriate testers who
can evaluate the compliance of their apps to accessibility guide-
lines. Existing accessibility scanners are tailored for the web,
and they cannot be applied to the mobile environment. In this
context, online user reviews, offer a rich source of scenarios,
which can be coupled with the app’s current version, to cre-
ate test cases of practically captured anomalies. Relying on
this set of reviews, as a shared knowledge, developers can
quickly identify potential test cases that they need to perform,
in case they are incorporating a given accessibility tool in their
app. Furthermore, as the mobile environment is extremely dy-
namic, recent user reviews can quickly reveal any appearing
anomalies in the newer app releases.

6 THREATS TO VALIDITY
In this section, we identify several threats to the validity

of our study. We group the threats to Construct Threats and
External Threats to validity.

Construct Threats relate to the appropriateness of our dataset
and accuracy of the previous work [18]. A potential threat is

Conference’17, July 2017, Washington, DC, USA AlOmar et al.

related to creating a training dataset or the manual classifica-
tion. Developing a training dataset is typically a tedious job,
also subject to reader bias. We mitigated this risk by choos-
ing a dataset of accessibility reviews as our training data that
were previously identified and validated [18]. Additionally, we
used all of the identified reviews as training input rather than
choosing a sample set of reviews. A total of 2,663 reviews were
previously identified as accessibility reviews from 214,053 app
reviews through manual inspections and validations.

Another potential threat relates to the keywords used for
the identification of accessibility reviews through a string-
matching approach. The string-matching approach relied on
213 keywords derived from 54 accessibility recommendations
by BBC. The keywords and phrases users use in their reviews
do not necessarily match the keywords available in the guide-
lines and recommendations. This mismatch includes but not
limited to situations when keywords would be spelled incor-
rectly by reviewers. A related concern is whether the set of
keywords is inclusive of all possible keywords that users use to
express their accessibility concerns. To mitigate this threat, we
used keywords defined by [18] in which the authors adopted
variants for these keywords to ensure they would not miss any
relevant review during their manual validation. This raised
our confidence to use the dataset that has these keywords as a
representative sample of accessibility reviews.

External Threats relate to the generalizability of our find-
ings for this evaluation. We evaluated and tested our find-
ings on a dataset collected by previous researchers [18]. The
dataset was collected only from Android open-source applica-
tions. Therefore, the dataset did not represent the entiremobile
apps on the App stores such as Apple store applications. Also,
we only study mobile application reviews of open-source ap-
plications. Our results may not generalize to commercially
developed projects or to other reviews that are written in other
languages than English.

7 CONCLUSION
This study presents an approach that automates the classifi-

cation of app reviews as accessibility-related or not so devel-
opers can easily detect accessibility issues with their products
and improve them to more accessible and inclusive apps utiliz-
ing the users’ input. As Hayes pointed out:“In Action Research,
the goal is ultimately to create sustainable change. That is to
say, once the research facilitators leave, the community part-
ners should be able to maintain the positive changes that have
been made.” [25]. Our goal is to create a sustainable change,
by including a model in developer’s software maintenance
pipeline, and raising awareness of existing errors that hinders
the accessibility of mobile apps, which is a pressing need [48].

As we develop our model, we conducted an evaluation of
nine different classifiers using an existing dataset of manually
validated accessibility reviews. Our evaluation shows that the
Boosted Decision Tree classifier offers higher accuracy than the
other approaches in the classification of app reviews. Addition-
ally, we compared our approach with two baselines, namely a
keyword-based approach, and a random classifier. The results

indicate that our approach outperforms the two state-of-the-art
approaches with the F1-measure of 90.7%. Finally, we conduct
an experiment to evaluate the impact of training data sizes on
our classifier’s accuracy. Our evaluation shows that we need
a relatively smaller dataset (i.e., 1500 reviews) for training to
get 85% or higher F1-measure. However, the F1-measure score
improves as we add to the training dataset.

As our results show, having an adequately large training
size is important for high accuracy in prediction. Given themil-
lions of app reviews available on the app store platforms, the
training process can be cumbersome and laborious. Addition-
ally, it is necessary to obtain labels frommultiple Subject Mater
Experts (SMEs) to make the training dataset more reliable. In
order to further reduce the efforts needed by developers and
SMEs in creating a training data, we are planning to explore
Active Learning [57, 58], a well-known machine learning para-
digm for classification. We also plan to perform a multi-class
classification on the accessibility reviews — dividing them
into categories such as readability of text, audio, video, UI,
gestures etc.

ACKNOWLEDGMENTS
The authors would like to thank William Catzin for his help

in this work. This material is based upon work supported
by the National Science Foundation, USA, under Grant No.
1757680.

REFERENCES
[1] Gaurav Agrawal, Devendra Kumar, Mayank Singh, and Diksha Dani. 2019.

Evaluating accessibility and usability of Airline websites. In International
Conference on Advances in Computing and Data Sciences. Springer, 392–402.

[2] Eman Abdullah AlOmar, Mohamed Wiem Mkaouer, and Ali Ouni. 2019.
Can Refactoring Be Self-Affirmed? An Exploratory Study on How De-
velopers Document Their Refactoring Activities in Commit Messages. In
2019 IEEE/ACM 3rd International Workshop on Refactoring (IWoR). 51–58.
https://doi.org/10.1109/IWoR.2019.00017

[3] Eman Abdullah AlOmar, Mohamed Wiem Mkaouer, and Ali Ouni. 2020.
Toward the automatic classification of self-affirmed refactoring. Journal of
Systems and Software 171 (2020), 110821.

[4] Eman Abdullah AlOmar, Anthony Peruma, Mohamed Wiem Mkaouer,
Christian Newman, Ali Ouni, and Marouane Kessentini. 2020. How we
refactor and how we document it? On the use of supervised machine
learning algorithms to classify refactoring documentation. Expert Systems
with Applications (2020), 114176.

[5] Abdulaziz Alshayban, Iftekhar Ahmed, and SamMalek. 2020. Accessibility
Issues in Android Apps: State of Affairs, Sentiments, and Ways Forward.
In 42nd International Conference on Software Engineering (ICSE 2020).

[6] GalenAndrew and JianfengGao. 2007. Scalable Training of L1-Regularized
Log-Linear Models. In International Conference on Machine Learning (inter-
national conference on machine learning ed.).

[7] Microsoft Azure. 2020. Azure Machine Learning. https://
azure.microsoft.com/en-us/services/machine-learning/ Library Catalog:
azure.microsoft.com.

[8] Hyunmi Baek, JoongHo Ahn, and Youngseok Choi. 2012. Helpfulness of
online consumer reviews: Readers’ objectives and review cues. International
Journal of Electronic Commerce 17, 2 (2012), 99–126.

[9] Mars Ballantyne, Archit Jha, Anna Jacobsen, J ScottHawker, andYasmineN
El-Glaly. 2018. Study of accessibility guidelines of mobile applications.
In Proceedings of the 17th international conference on mobile and ubiquitous
multimedia. 305–315.

[10] BBC. 2017. The BBC Standards and Guidelines for Mobile Accessibility.
https://www.bbc.co.uk/guidelines/futuremedia/accessibility/mobile

[11] Sarah Chiti and Barbara Leporini. 2012. Accessibility of android-based
mobile devices: a prototype to investigate interaction with blind users.
In International Conference on Computers for Handicapped Persons. Springer,
607–614.

https://doi.org/10.1109/IWoR.2019.00017
https://azure.microsoft.com/en-us/services/machine-learning/
https://azure.microsoft.com/en-us/services/machine-learning/
https://www.bbc.co.uk/guidelines/futuremedia/accessibility/mobile

Finding the Needle in a Haystack: On the Automatic Identification of Accessibility User Reviews Conference’17, July 2017, Washington, DC, USA

[12] Adelina Ciurumelea, Andreas Schaufelbuhl, Sebastiano Panichella, and
Harald C. Gall. 2017. Analyzing reviews and code of mobile apps for better
release planning. In 2017 IEEE 24th International Conference on Software
Analysis, Evolution and Reengineering (SANER). IEEE, Klagenfurt, Austria,
91–102. https://doi.org/10.1109/SANER.2017.7884612

[13] Jacob Cohen. 1960. A coefficient of agreement for nominal scales. Educa-
tional and psychological measurement 20, 1 (1960), 37–46.

[14] Michael Collins. 2002. Discriminative training methods for hidden markov
models: Theory and experiments with perceptron algorithms. In Pro-
ceedings of the ACL-02 conference on Empirical methods in natural language
processing-Volume 10. Association for Computational Linguistics, 1–8.

[15] Michael Crabb, Michael Heron, Rhianne Jones, Mike Armstrong, Hayley
Reid, and AmyWilson. 2019. Developing Accessible Services: Understand-
ing Current Knowledge and Areas for Future Support. In Proceedings of
the 2019 CHI Conference on Human Factors in Computing Systems (Glasgow,
Scotland Uk) (CHI ’19). Association for Computing Machinery, New York,
NY, USA, 1–12. https://doi.org/10.1145/3290605.3300446

[16] Andrea Di Sorbo, Sebastiano Panichella, Carol V. Alexandru, Corrado A.
Visaggio, and Gerardo Canfora. 2017. SURF: Summarizer of User Re-
views Feedback. In 2017 IEEE/ACM 39th International Conference on Soft-
ware Engineering Companion (ICSE-C). IEEE, Buenos Aires, 55–58. https:
//doi.org/10.1109/ICSE-C.2017.5

[17] Trinidad Domínguez Vila, Elisa Alén González, and Simon Darcy. 2018.
Website accessibility in the tourism industry: an analysis of official national
tourism organizationwebsites around theworld.Disability and rehabilitation
40, 24 (2018), 2895–2906.

[18] Marcelo Medeiros Eler, Leandro Orlandin, and Alberto Dumont Alves
Oliveira. 2019. Do Android app users care about accessibility?: an analysis
of user reviews on the Google play store. In Proceedings of the 18th Brazilian
Symposium on Human Factors in Computing Systems. ACM, Vitória Espírito
Santo Brazil, 1–11. https://doi.org/10.1145/3357155.3358477

[19] Marcelo Medeiros Eler, Jose Miguel Rojas, Yan Ge, and Gordon Fraser.
2018. Automated Accessibility Testing of Mobile Apps. In 2018 IEEE 11th
International Conference on Software Testing, Verification and Validation (ICST).
IEEE, Vasteras, 116–126. https://doi.org/10.1109/ICST.2018.00021

[20] Manuel Fernández-Delgado, Eva Cernadas, Senén Barro, and Dinani
Amorim. 2014. Do we need hundreds of classifiers to solve real world
classification problems? The journal of machine learning research 15, 1 (2014),
3133–3181.

[21] Joseph L Fleiss, Bruce Levin, Myunghee Cho Paik, et al. 1981. The mea-
surement of interrater agreement. Statistical methods for rates and proportions
2, 212-236 (1981), 22–23.

[22] Jerome H Friedman. 2001. Greedy function approximation: a gradient
boosting machine. Annals of statistics (2001), 1189–1232.

[23] Katerina Goseva-Popstojanova and Jacob Tyo. 2018. Identification of secu-
rity related bug reports via textmining using supervised and unsupervised
classification. In 2018 IEEE International Conference on Software Quality, Reli-
ability and Security (QRS). IEEE, 344–355.

[24] Lars KaiHansen andPeter Salamon. 1990. Neural network ensembles. IEEE
Transactions on Pattern Analysis & Machine Intelligence 10 (1990), 993–1001.

[25] Gillian R Hayes. 2011. The relationship of action research to human-
computer interaction. ACM Transactions on Computer-Human Interaction
(TOCHI) 18, 3 (2011), 1–20.

[26] Ralf Herbrich, Thore Graepel, and Colin Campbell. 2001. Bayes point
machines. Journal of Machine Learning Research 1, Aug (2001), 245–279.

[27] Michael Heron, Vicki L Hanson, and Ian Ricketts. 2013. Open source and
accessibility: advantages and limitations. Journal of interaction Science 1, 1
(2013), 1–10.

[28] Claudia Iacob and Rachel Harrison. 2013. Retrieving and analyzing mobile
apps feature requests from online reviews. In 2013 10th Working Conference
onMining Software Repositories (MSR). IEEE, San Francisco, CA, USA, 41–44.
https://doi.org/10.1109/MSR.2013.6624001

[29] Cijo Jose, Prasoon Goyal, Parv Aggrwal, and Manik Varma. 2013. Local
deep kernel learning for efficient non-linear svm prediction. In International
conference on machine learning. 486–494.

[30] Royce Kimmons. 2017. Open to all? Nationwide evaluation of high-priority
web accessibility considerations among higher education websites. Journal
of Computing in Higher Education 29, 3 (2017), 434–450.

[31] Eric Knauss, Daniela Damian, German Poo-Caamano, and Jane Cleland-
Huang. 2012. Detecting and classifying patterns of requirements clarifica-
tions. In 2012 20th IEEE International Requirements Engineering Conference
(RE). IEEE, Chicago, IL, USA, 251–260. https://doi.org/10.1109/RE.2012.
6345811

[32] Ron Kohavi et al. 1995. A study of cross-validation and bootstrap for
accuracy estimation andmodel selection. In Ijcai, Vol. 14.Montreal, Canada,
1137–1145.

[33] Kowsari, Jafari Meimandi, Heidarysafa, Mendu, Barnes, and Brown. 2019.
Text Classification Algorithms: A Survey. Information 10, 4 (April 2019),

150. https://doi.org/10.3390/info10040150
[34] Stefan Lessmann, Bart Baesens, Christophe Mues, and Swantje Pietsch.

2008. Benchmarking classification models for software defect prediction:
A proposed framework and novel findings. IEEE Transactions on Software
Engineering 34, 4 (2008), 485–496.

[35] Stanislav Levin and Amiram Yehudai. 2017. Boosting Automatic Com-
mit Classification Into Maintenance Activities By Utilizing Source Code
Changes. In Proceedings of the 13th International Conference on Predictive
Models and Data Analytics in Software Engineering - PROMISE. ACM Press,
Toronto, Canada, 97–106. https://doi.org/10.1145/3127005.3127016

[36] Stanislav Levin and Amiram Yehudai. 2019. Towards Software Analytics:
Modeling Maintenance Activities. arXiv:1903.04909 [cs] (March 2019).
http://arxiv.org/abs/1903.04909 arXiv: 1903.04909.

[37] Xiaozhou Li, Zheying Zhang, and Kostas Stefanidis. 2018. Mobile App
Evolution Analysis based on User Reviews. (2018), 14.

[38] Andy Liaw, Matthew Wiener, et al. 2002. Classification and regression by
randomForest. R news 2, 3 (2002), 18–22.

[39] Walid Maalej, Hans-Jörg Happel, and Asarnusch Rashid. 2009. When
users become collaborators: towards continuous and context-aware user
input. In Proceedings of the 24th ACM SIGPLAN conference companion on
Object oriented programming systems languages and applications. 981–990.

[40] Everton da Silva Maldonado, Emad Shihab, and Nikolaos Tsantalis. 2017.
UsingNatural Language Processing to Automatically Detect Self-Admitted
Technical Debt. IEEE Transactions on Software Engineering 43, 11 (Nov. 2017),
1044–1062. https://doi.org/10.1109/TSE.2017.2654244

[41] Stuart McIlroy, Nasir Ali, Hammad Khalid, and Ahmed E. Hassan. 2016.
Analyzing and automatically labelling the types of user issues that are
raised in mobile app reviews. Empirical Software Engineering 21, 3 (June
2016), 1067–1106. https://doi.org/10.1007/s10664-015-9375-7

[42] Susan MMudambi and David Schuff. 2010. Research note: What makes
a helpful online review? A study of customer reviews on Amazon. com.
MIS quarterly (2010), 185–200.

[43] Emerson Murphy-Hill, Chris Parnin, and Andrew P. Black. 2012. How We
Refactor, and HowWe Know It. IEEE Transactions on Software Engineering
38, 1 (Jan. 2012), 5–18. https://doi.org/10.1109/TSE.2011.41

[44] Moein Owhadi-Kareshk, Sarah Nadi, and Julia Rubin. 2019. Predict-
ing Merge Conflicts in Collaborative Software Development. In 2019
ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM). IEEE, 1–11.

[45] Fabio Palomba, Mario Linares-Vasquez, Gabriele Bavota, Rocco Oliveto,
Massimiliano Di Penta, Denys Poshyvanyk, and Andrea De Lucia. 2015.
User reviews matter! Tracking crowdsourced reviews to support evolu-
tion of successful apps. In 2015 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, Bremen, Germany, 291–300.
https://doi.org/10.1109/ICSM.2015.7332475

[46] Sebastiano Panichella, Andrea Di Sorbo, Emitza Guzman, Corrado A. Vis-
aggio, Gerardo Canfora, and Harald C. Gall. 2015. How can i improve my
app? Classifying user reviews for software maintenance and evolution. In
2015 IEEE International Conference on Software Maintenance and Evolution
(ICSME). IEEE, Bremen, Germany, 281–290. https://doi.org/10.1109/
ICSM.2015.7332474

[47] Kyudong Park, Taedong Goh, and Hyo-Jeong So. 2014. Toward Accessible
Mobile Application Design: Developing Mobile Application Accessibility
Guidelines for People with Visual Impairment. In Proceedings of HCI Korea
(Seoul, Republic of Korea) (HCIK ’15). Hanbit Media, Inc., Seoul, KOR,
31–38.

[48] Rohan Patel, Pedro Breton, Catherine M Baker, Yasmine N El-Glaly, and
Kristen Shinohara. 2020. Why Software is Not Accessible: Technology
Professionals’ Perspectives and Challenges. In Extended Abstracts of the 2020
CHI Conference on Human Factors in Computing Systems. 1–9.

[49] Lucas Pelloni, Giovanni Grano, Adelina Ciurumelea, Sebastiano Panichella,
Fabio Palomba, and Harald C. Gall. 2018. BECLoMA: Augmenting stack
traces with user review information. In 2018 IEEE 25th International Con-
ference on Software Analysis, Evolution and Reengineering (SANER). IEEE,
Campobasso, 522–526. https://doi.org/10.1109/SANER.2018.8330252

[50] Anita Prinzie and Dirk Van den Poel. 2008. Random forests for multiclass
classification: Random multinomial logit. Expert systems with Applications
34, 3 (2008), 1721–1732.

[51] Cynthia Putnam, Kathryn Wozniak, Mary Jo Zefeldt, Jinghui Cheng, Mor-
gan Caputo, and Carl Duffield. 2012. How do professionals who create
computing technologies consider accessibility?. In Proceedings of the 14th
international ACM SIGACCESS conference on Computers and accessibility. 87–
94.

[52] Jacek Ratzinger, Thomas Sigmund, andHaraldCGall. 2008. On the relation
of refactorings and software defect prediction. In Proceedings of the 2008
international working conference on Mining software repositories. 35–38.

https://doi.org/10.1109/SANER.2017.7884612
https://doi.org/10.1145/3290605.3300446
https://doi.org/10.1109/ICSE-C.2017.5
https://doi.org/10.1109/ICSE-C.2017.5
https://doi.org/10.1145/3357155.3358477
https://doi.org/10.1109/ICST.2018.00021
https://doi.org/10.1109/MSR.2013.6624001
https://doi.org/10.1109/RE.2012.6345811
https://doi.org/10.1109/RE.2012.6345811
https://doi.org/10.3390/info10040150
https://doi.org/10.1145/3127005.3127016
http://arxiv.org/abs/1903.04909
https://doi.org/10.1109/TSE.2017.2654244
https://doi.org/10.1007/s10664-015-9375-7
https://doi.org/10.1109/TSE.2011.41
https://doi.org/10.1109/ICSM.2015.7332475
https://doi.org/10.1109/ICSM.2015.7332474
https://doi.org/10.1109/ICSM.2015.7332474
https://doi.org/10.1109/SANER.2018.8330252

Conference’17, July 2017, Washington, DC, USA AlOmar et al.

[53] André Rodrigues, Hugo Nicolau, Kyle Montague, João Guerreiro, and
Tiago Guerreiro. 2020. Open Challenges of Blind People Using Smart-
phones. International Journal of Human–Computer Interaction 36, 17
(2020), 1605–1622. https://doi.org/10.1080/10447318.2020.1768672
arXiv:https://doi.org/10.1080/10447318.2020.1768672

[54] Anne Spencer Ross, Xiaoyi Zhang, James Fogarty, and Jacob O. Wobbrock.
2017. Epidemiology as a Framework for Large-Scale Mobile Applica-
tion Accessibility Assessment. In Proceedings of the 19th International ACM
SIGACCESS Conference on Computers and Accessibility (Baltimore, Maryland,
USA) (ASSETS ’17). Association for Computing Machinery, New York,
NY, USA, 2–11. https://doi.org/10.1145/3132525.3132547

[55] Anne Spencer Ross, Xiaoyi Zhang, James Fogarty, and Jacob O. Wobbrock.
2018. Examining Image-Based Button Labeling for Accessibility in Android
Apps through Large-Scale Analysis. In Proceedings of the 20th International
ACM SIGACCESS Conference on Computers and Accessibility (Galway, Ire-
land) (ASSETS ’18). Association for Computing Machinery, New York,
NY, USA, 119–130. https://doi.org/10.1145/3234695.3236364

[56] Scikit-learn.org. 2006. Parameter Estimation Using Grid Search with Scikit-
Learn. Available online:. https://scikit-learn.org/stable/modules/grid_
search.html,. Accessed: 2020-04-01.

[57] Burr Settles. 2012. Active Learning. Synthesis Lectures onArtificial Intelligence
and Machine Learning 6, 1 (June 2012), 1–114. https://doi.org/10.2200/
S00429ED1V01Y201207AIM018 Publisher: Morgan & Claypool Publishers.

[58] Burr Settles and Mark Craven. 2008. An analysis of active learning
strategies for sequence labeling tasks. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing - EMNLP ’08. Associ-
ation for Computational Linguistics, Honolulu, Hawaii, 1070. https:
//doi.org/10.3115/1613715.1613855

[59] Norbert Seyff, Florian Graf, and Neil Maiden. 2010. Using Mobile RE
Tools to Give End-Users Their Own Voice. In 2010 18th IEEE International
Requirements Engineering Conference. IEEE, Sydney, Australia, 37–46. https:
//doi.org/10.1109/RE.2010.15

[60] Qinfeng Shi, James Petterson, Gideon Dror, John Langford, Alex Smola,
and SVN Vishwanathan. 2009. Hash kernels for structured data. Journal of
Machine Learning Research 10, Nov (2009), 2615–2637.

[61] Jamie Shotton, Toby Sharp, Pushmeet Kohli, Sebastian Nowozin,
John Winn, and Antonio Criminisi. 2013. Decision Jungles: Com-
pact and Rich Models for Classification. In Proc. NIPS (proc. nips
ed.). https://www.microsoft.com/en-us/research/publication/decision-

jungles-compact-and-rich-models-for-classification/
[62] Konstantinos Stroggylos and Diomidis Spinellis. 2007. Refactoring–Does

It Improve Software Quality?. In Fifth International Workshop on Software
Quality (WoSQ’07: ICSE Workshops 2007). IEEE, Minneapolis, MN, USA,
10–10. https://doi.org/10.1109/WOSQ.2007.11

[63] Chade-Meng Tan, Yuan-FangWang, and Chan-Do Lee. 2002. The use of bi-
grams to enhance text categorization. Information Processing & Management
38, 4 (July 2002), 529–546. https://doi.org/10.1016/S0306-4573(01)00045-
0

[64] Garreth W Tigwell, David R Flatla, and Neil D Archibald. 2017. ACE: a
colour palette design tool for balancing aesthetics and accessibility. ACM
Transactions on Accessible Computing (TACCESS) 9, 2 (2017), 1–32.

[65] Twitter. 2018. The new Skype is beyond frustrating. https://twitter.com/
sinabahram/status/949000003451842560

[66] Christopher Vendome, Diana Solano, Santiago Liñán, and Mario Linares-
Vásquez. 2019. Can everyone use my app? An Empirical Study on Accessi-
bility in Android Apps. In 2019 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 41–52.

[67] Phong Minh Vu, Tam The Nguyen, Hung Viet Pham, and Tung Thanh
Nguyen. 2015. Mining User Opinions in Mobile App Reviews: A Keyword-
based Approach. arXiv:1505.04657 [cs] (Oct. 2015). http://arxiv.org/abs/
1505.04657 arXiv: 1505.04657.

[68] Kilian Weinberger, Anirban Dasgupta, John Langford, Alex Smola, and
Josh Attenberg. 2009. Feature hashing for large scale multitask learning.
In Proceedings of the 26th annual international conference on machine learning.
1113–1120.

[69] Brian Wentz, Dung Pham, Erin Feaser, Dylan Smith, James Smith, and
Allison Wilson. 2019. Documenting the accessibility of 100 US bank and
finance websites. Universal Access in the Information Society 18, 4 (2019),
871–880.

[70] Xindong Wu, Vipin Kumar, J Ross Quinlan, Joydeep Ghosh, Qiang Yang,
Hiroshi Motoda, Geoffrey J McLachlan, Angus Ng, Bing Liu, S Yu Philip,
et al. 2008. Top 10 algorithms in data mining. Knowledge and information
systems 14, 1 (2008), 1–37.

[71] Shunguo Yan and P. G. Ramachandran. 2019. The Current Status of Ac-
cessibility in Mobile Apps. ACM Transactions on Accessible Computing 12, 1
(Feb. 2019), 1–31. https://doi.org/10.1145/3300176

[72] Yaqin Zhou and Asankhaya Sharma. 2017. Automated identification of
security issues from commit messages and bug reports. In Proceedings of
the 2017 11th Joint Meeting on Foundations of Software Engineering. 914–919.

https://doi.org/10.1080/10447318.2020.1768672
https://arxiv.org/abs/https://doi.org/10.1080/10447318.2020.1768672
https://doi.org/10.1145/3132525.3132547
https://doi.org/10.1145/3234695.3236364
https://scikit-learn.org/stable/modules/grid_search.html
https://scikit-learn.org/stable/modules/grid_search.html
https://doi.org/10.2200/S00429ED1V01Y201207AIM018
https://doi.org/10.2200/S00429ED1V01Y201207AIM018
https://doi.org/10.3115/1613715.1613855
https://doi.org/10.3115/1613715.1613855
https://doi.org/10.1109/RE.2010.15
https://doi.org/10.1109/RE.2010.15
https://www.microsoft.com/en-us/research/publication/decision-jungles-compact-and-rich-models-for-classification/
https://www.microsoft.com/en-us/research/publication/decision-jungles-compact-and-rich-models-for-classification/
https://doi.org/10.1109/WOSQ.2007.11
https://doi.org/10.1016/S0306-4573(01)00045-0
https://doi.org/10.1016/S0306-4573(01)00045-0
https://twitter.com/sinabahram/status/949000003451842560
https://twitter.com/sinabahram/status/949000003451842560
http://arxiv.org/abs/1505.04657
http://arxiv.org/abs/1505.04657
https://doi.org/10.1145/3300176

	Abstract
	1 Introduction
	2 Related Work
	2.1 User Reviews
	2.2 Accessibility in User Reviews
	2.3 Classification of Text Documents

	3 Accessibility App Review Classification
	3.1 Data Collection
	3.2 Data Preparation
	3.3 Feature Extraction
	3.4 Model Selection and Tuning
	3.5 Model Evaluation

	4 Experimental Results and Evaluation
	5 Discussion
	6 Threats to Validity
	7 Conclusion
	Acknowledgments
	References

