
Mining and Managing Big Data Refactoring for
Design Improvement: Are We There Yet?

Eman Abdullah AlOmar1, Mohamed Wiem Mkaouer1, and Ali Ouni2

1 Rochester Institute of Technology,
Rochester, New York, USA

2 ETS Montreal, University of Quebec,
Montreal, QC, Canada

Abstract. Refactoring is a set of code changes applied to improve the
internal structure of a program, without altering its external behavior.
With the rise of continuous integration and the awareness of the necessity
of managing technical debt, refactoring has become even more popular
in recent software builds. Recent studies indicate that developers often
perform refactorings. If we consider all refactorings performed across all
projects, this consists of the refactoring knowledge that represents a rich
source of information that can be useful for both developers and practi-
tioners to better understand how refactoring is being applied in practice.
However, mining, processing, and extracting useful insights, from this
plethora of refactorings, seems to be challenging. In this book chapter,
we take a dive into how refactoring can be mined and preprocessed. We
discuss all design concepts and structural metrics that can also be mined
along with refactoring operations to understand their impact better. We
further investigate the many practical challenges for such extraction. The
volume, velocity, and variety of extracted data require careful planning.
We outline the appropriate techniques from a large number of available
technologies for such system implementation.

Keywords: refactoring, software maintenance, software quality

1 Introduction

Successful software systems undergo evolution through the continuous code changes,
as means to update features, fix bugs, and produce a more reliable and efficient
product. Prior studies have pointed out how software complexity can be a seri-
ous obstacle preventing the ease of software evolution, as large and sophisticated
modules are, in general, harder to understand, and error-prone. Such patterns,
located in the system design, negatively impact the overall quality of software
as they are responsible for making its design inadequate for evolution. In this
context, it has been shown that software engineers spend up to 60% of their
programming time in reading source code, and trying to understand its func-
tionality, in order to properly perform the needed changes without "breaking"
the code. Consequently, software maintenance activities that are related to im-
proving the overall software quality to take up to 67% of the cost allocated for



2 Eman Abdullah AlOmar, Mohamed Wiem Mkaouer, and Ali Ouni

the project. The de-facto way of handling such debt is through software refac-
toring. By definition, refactoring is the art of improving design structure while
preserving the overall external behavior. With the rise of technical debt, and
developers acknowledgment of shortage in their deliverables, refactoring stands
as a critical task to maintain the existence of software and to prevent it from
decay.

Projects that are known to be successful in maintaining their quality through
several waves of updates and migrations across various programming paradigms
and frameworks, are known to be witnessing efficient refactoring strategies. Such
hidden knowledge has triggered the intention of research to mine and understand
how developers refactor their code in practice. In this context, several refactoring
detection tools have been lately proposed to mine the development history of a
given software project, and extract all the information related to all refactoring
operations that were performed on its code elements.

As recent refactoring tools (e.g., RefactoringMiner [24] and RefDiff [21]) have
reached a high level of maturity, their usage across various large projects has trig-
gered an explosion in the information that can be obtained regarding previously
performed refactorings, and their corresponding impact on the source code. Fur-
thermore, refactoring, being by nature a code change, when batched, becomes
harder to analyze. Moreover, code changes visualization is gaining more atten-
tion in software engineering research, yet visualizing refactoring is still under-
researched.

Fig. 1: Big data refactoring



Title Suppressed Due to Excessive Length 3

For the above mentioned challenges that the plethora of refactorings have
emerged, this chapter initiates the discussion about how the world of big data
can provide a rich source of solutions. We detail the multiple challenges linked
to refactoring indexing, analysis and visualization, while exploring potential big
data solutions. As depicted in Figure 1, we identify five refactoring challenges,
triggering the explosion of refactoring data, which we can call Big Data Refac-
toring Challenges. These challenges are 1) Detection of refactoring operations
in software systems, 2) Developer’s Documentation of refactoring activities, 3)
Recommendation of refactoring opportunities on existing software systems, 5)
Automation of refactoring execution, and 5) Visualization of refactoring impact
on the source code. We organize this chapter to explore each of these challenges,
by detailing its existing tools and methodologies, along with discussing their lim-
itations and how they are explicitly or implicitly linked to big data dimensions.

This chapter is organized as follows: the first section is associated with tools
and techniques related to the identification of executed refactorings, the next
section is dedicated for documentation. Section 4 summarizes the existing tools
to automate the generation of refactorings. Recommending refactorings is also
covered in Section 5. The need for refactoring visualization is covered in Section
6 before concluding in Section 7.

2 Mining and Detection

The popularity of the GitHub hosting service is increasing rapidly and has been
used frequently for the base of data collection in literature. Research in mining
software repositories mainly relies on two GitHub services: the version and bug
tracking systems. GitHub stores all versions of the source code and any specific
changes are represented by a commit that involves a textual description of the
change (i.e., commit message). The bug tracking system, on the other hand,
provides an interface for reporting errors. GitHub makes it possible to mine a
large amount of information and different properties of open source projects.

The challenge in this area lies in analyzing a comprehensive and large num-
ber of GitHub commits containing refactoring. Several studies have mining tools
to identify refactoring operations between two versions of a software system.
Dig et al. [9] developed a tool called Refactoring Crawler, which uses syntax
and graph analysis to detect refactorings. Prete et al. [20] proposed Ref-Finder,
which identifies complex refactorings using a template-based approach. Hayashi
et al. [12] considered the detection of refactorings as a search problem. The au-
thors proposed a graph search algorithm to model changes between software
versions. Xing and Stroulia [27] proposed JDevAn, which is a UMLDiff based,
design-level analyzer for detecting refactorings in the history of Object-Oriented
systems. Tsantalis et al. presented RefactoringMiner, which is a lightweight,
UMLDiff based algorithm that mines refactorings within Git commits. Silva and
Valente [21] extended RefactoringMiner by combining the heuristics-based static
analysis with code similarity (TF-IDF weighting scheme) to identify 13 refac-
toring types. Tsantalis et al. [24] extended their tool to enhance the accuracy of



4 Eman Abdullah AlOmar, Mohamed Wiem Mkaouer, and Ali Ouni

the 28 refactoring types that can be detected through structural constraints. A
recent survey by Tan [22] compares several refactoring detection tools and shows
that RefactoringMiner is currently the most accurate refactoring detection tool.
The choice of the mining tool is driven by accuracy; therefore RefactoringMiner
is suitable for mining and detecting refactorings and extracting big data refac-
toring. It is suitable for studies that require a large variety of repositories and
commit volumes.

Table 1: Studied dataset statistics.
Item Count

Studied projects 3,795
Commits with refactorings 322,479
Refactoring operations 1,208,970
Commits with refactorings & Keywords 2,312
Remove false positive commits 1,067
Final dataset 1,245

With the existence of millions of software projects, whose sizes vary from
small to large, mining their refactorings could lead to an amount of data that
cannot be handled by traditional means. This links mining refactoring to Big
Data’s Volume. For instance, in our recent study [2], we mined refactoring in
3,795 open source projects. The process extracted over 1,200,000 refactoring
operations, distributed in 322,479 commits. More details about this dataset is in
Table 1. We faced challenges in hosting and querying this data. To extend our
study, we need to extract refactorings in over 300 000 open source projects, and
we are currently unable to perform this study, unless we seek the right framework
to collect, store, and index such data.

Another interesting challenge related to such data, is its heterogeneity. Refac-
toring operations are different from each other in their structure, target code
elements and impact on source code. For instance, the rename identifier refac-
toring, is the act of changing the name of a given attribute. Such operation
requires saving the old name of the attribute, its new name and the path of
the file containing the attribute. As for extract method, which is the splitting
of a given method into two sub-methods, this operation requires saving the old
method signature, and body (and path) along with saving the signature and
bodies of the newly created methods (and paths). So, each refactoring type re-
quires a unique structure to store its information. Furthermore, various studies
are interested in the reachability of the refactoring operation, to better analyze
their impact on the code design. Storing refactored code elements and their cor-
responding dependencies may require specific data structures like graphs. For
large and complex systems, analyzing such information is challenging.



Title Suppressed Due to Excessive Length 5

3 Refactoring Documentation

A number of studies have focused recently on the identification and detection
of refactoring activities during the software life cycle. One of the common ap-
proaches to identify refactoring activities is to analyze the commit messages in
version-controlled repositories. Prior work [2] has explored how developers docu-
ment their refactoring activities in commit messages; this activity is called Self-
Admitted Refactoring or Self-Affirmed Refactoring (SAR). In particular, SAR
refers to the situation which shows developers explicit documentation of refac-
toring operations intentionally introduced during a code change. For example,
by manual inspection of the Cassandra-unit1 open source project, AlOmar et
al [2] used this example to demonstrate SAR: "refactoring of Abstract*DataSet
to delete duplicate code," which indicates that developers intentionally refactor
one class to remove the redundancy antipattern that violates design principles.
The authors manually analyzed commit messages by reading through 58,131
commits. Then they extracted, from these commit messages, a set of repetitive
keywords and phrases which are specific to refactoring. They provided a set of 87
patterns, identified across 3,795 open source projects. Since this approach heavily
depends on the manual inspection of commit messages, in follow-up work, AlO-
mar et al. [3] presented a two-step approach that firstly distinguishes whether
a commit message potentially contains an explicit description of a refactoring
effort. Then, secondly classifies it into one of the three common categories iden-
tified in previous study [2], which is the first attempt to automate the detection
and classification of self-affirmed refactorings. The existence of such patterns
unlocks more studies that question the developers’ perception of quality at-
tributes (e.g., coupling, complexity); these results may be used to recommend
future refactoring activity. For instance, AlOmar et al. [4] identified which qual-
ity models are more in line with the developer’s vision of quality optimization
when they explicitly mention in the commit messages that they refactor to im-
prove these quality attributes. This study shows that, although there is a variety
of structural metrics can represent internal quality attributes, not all of them can
measure what developers consider to be an improvement in their source code.
Based on their empirical investigation, for metrics that are associated with qual-
ity attributes, there are different degrees of improvement and degradation of
software quality for different SAR patterns.

As stated above, developers use a variety of patterns to express their refac-
toring activities. Previous studies illustrate such a pattern. However, one big
challenge is that it is not practical for large real world projects to manually
collect all potential keywords/phrases reported in a large number of commit
messages, as developers may use various expressions to annotate how they refac-
tor. To cope with this challenge, future research could plan to use the findings
of previous studies to build a text-mining tool that will automatically support
software engineers in the task of identifying, detecting, and highlighting self-
affirmed refactoring in the commit messages. This detector could allow users to
train their own model and integrate self-affirmed refactoring detectors into their
development tools.



6 Eman Abdullah AlOmar, Mohamed Wiem Mkaouer, and Ali Ouni

Table 2: Potential candidate refactoring text patterns.

Potential Candidate Refactoring Patterns
BugFix Code Smell External Functional Internal
Minor fixes Avoid code duplication Reusable structure Add* feature Decoupling
Bug* fix* Avoid duplicate code Improv* code reuse Add new feature Enhance loose coupling
Fix* bug* Avoid redundant method Add* flexibility Added a bunch of features Reduced coupling
Bug hunting Code duplication removed Increased flexibility New module Reduce coupling and scope of

responsibility
Correction of bug Delet* duplicate code More flexibility Fix some GUI Prevent the tight coupling
Improv* error handling Remove unnecessary else

blocks
Provide flexibility Added interesting feature Reduced the code size

Fix further thread safety issues Eliminate duplicate code A bit more readable Added more features Complexity has been reduced
Fixed major bug Fix for duplicate method Better readability Adding features to support Reduce complexity
Fix numerous bug Filter duplicate Better readability and testabil-

ity
Adding new features Reduced greatly the complex-

ity
Fix several bug Joining duplicate code Code readability optimization Addition of a new feature Removed unneeded complex-

ity
Fixed a minor bug Reduce a ton of code duplica-

tion
Easier readability Feature added Removes much of the com-

plexity
Fixed a tricky bug Reduce code duplication Improve readability Implement one of the batch

features
Add inheritance

Fix* small bug Reduced code repetition Increase readability Implementation of feature Added support to the inheri-
tance

Fixed nasty bug Refactored duplicate code Make it better readable Implemented the experimental
feature

Avoid using inheritance and
using composition instead

Fix* some bug* Clear up a small design flaw Make it more readable Introduced possibility to erase
features

Better support for specifica-
tion inheritance

Fixed some minor bugs TemporalField has been refac-
tored

Readability enhancement New feature Change* inheritance

bugfix* Remove commented out code Readability and supportability
improvement

Remove the default feature Extend the generated classes
using inheritance

Fix* typo* Removed a lot of code dupli-
cation

Readability improvements Removed incomplete features Improved support for inheri-
tance

Fix* broken Remov* code duplication Reformatted for readability Renamed many features Perform deep inheritance
Fix* incorrect Remove some code duplica-

tion
Simplify readability Renamed some of the features

for consistency
Remove inheritance

Fix* issue* Removed the big code dupli-
cation

Improve* testability Small feature addition Inheritance management

Fix* several issue* Removed some dead and du-
plicate code

Update the performance Support of optional feature Loosened the module depen-
dency

Fix* concurrency issue* with Remov* duplicate code Add* performance Supporting for derived fea-
tures

Prevents circular inheritance

Fixes several issues Resolved duplicate code Scalability improvement Added functionality Avoid using inheritance
Solved some minor bugs Sort out horrendous code du-

plication
Better performance Added functionality for merge Add composition

Working on a bug Remove duplicated field Huge performance improve-
ment

Adding new functionality Composition better than in-
heritance

Get rid of Remov* dead code Improv* performance Adds two new pieces of func-
tionality to

Us* composition

A bit of a simple solution to
the issue

Remove some dead-code More manageable Consolidate common func-
tionality

Separates concerns

A fix to the issue Removed all dead code More efficient* Development of this function-
ality

Better handling of polymor-
phism

Fix a couple of issue Removed apparently dead
code

Make it reusable for other Export functionality Makes polymorphism easier

Issue management This is a bit of dead code Increase efficiency Extend functionality of Better encapsulation
Fix* minor issue Removed more dead code Verify correctness Extract common functionality Better encapsulation and less

dependencies
Correct issue Fix* code smell Massive performance improve-

ment
Functionality added Pushed down dependencies

Additional fixes Fix* some code smell Increase performance House common functionality Remov* dependency
Resolv* problem Remov* some ’code smells’ Largely resolved performance

issues
Improved functionality Split out each module into

Correct* test failure* Update data classes Lots of performance improve-
ment

Move functionality

Fix* all failed test* Remove useless class Measuring the performance Moved shared functionality
Fix* compile failure Removed obviously unused/-

faulty code
Improv* stability Feature/code improvements

A fix for the errors Lots of modifications to code
style

Usability improvements Pulling-up common function-
ality

Better error handling Antipattern bad for perfor-
mances

Noticeable performance im-
provement

Push more functionality

Better error message handling Killed really old comments Optimizing the speed Re-implemented missing func-
tions

Cleanup error message Less long methods Performance boost Refactored functionality
Error fix* Removed some unnecessary

fields
Performance enhancement Refactoring existing function-

ality
Fixed wrong Performance improvement Add functionality to
Fix* error* Performance much improved Remov* function*
Fix* some error* Performance optimization Merging its functionality with
Fix small error Performance speed-up Remove* unnecessary func-

tion*
Fix some errors Refactor performance test Reworked functionality
Fix compile error Renamed performance test Removing obsolete functional-

ity
Fix test error Speed up performance Replicating existing function-

ality with
Fixed more compilation errors Backward compatible with Split out the GUI function
Fixed some compile errors Fix backward compatibility Add cosmetic changes
Fixes all build errors Fixing migration compatibility Add* support
Fixed Failing tests Fully compatible with Implement* new architecture
Handle Keep backwards compatible Update
Handling error* Maintain compatibility Additional changes for
Error* fix* Make it compatible with UI layout has changed
Tweaking error handling More compatible GUI: Small changes
Various fix* Should be backward-

compatible
New UI layout

Fix* problem* Retains backward compatibil-
ity

UI changes

Got rid of deprecated code Stay compatible with UI enhancements
Delet* deprecated code Added some robustness
Remov* deprecated code Improve robustness

Improve usability



Title Suppressed Due to Excessive Length 7

If we want to extend the study of AlOmar et al. [4], and analyze refactor-
ing documentation across the dataset previously described in Table 1, we are
challenged by the Volume of text that needs to be analyzed. Furthermore, this
text is originated from many developers, from different projects, and so, it con-
tains various semantics, which increases the ambiguity of deciphering it. From a
Variability perspective, there is a need to find better formatting and indexing for
this text in order to adequately extract the needed information. For instance, the
rise of word2Vec [11], when combined with the appropriate vector indexing, may
provide a potential solution to avoid naive string matching, which is known to
generate false positives. Other topic modeling techniques can be also explored to
extract textual patterns which are relevant to refactoring documentation, how-
ever, their manual validation is challenging due to the large number of potential
patterns that can be generated. For instance, Table 2, showcases the existence
of various refactoring candidate textual patterns, extracted from our dataset in
Table 1, and which require manual validation.

4 Refactoring Automation

Maintaining large scale code and ensuring large scale semantically safe refac-
toring can be a challenging task. Many contemporary IDEs provide a limited
set of automatic refactoring operations applied to a single file or package. Han-
dling large refactoring poses a big challenge in many object-oriented development
projects. Further, performing a high volume of refactoring typically takes longer
and changes multiple parts of the system. If refactoring influences large chunks of
the system, as a result, there is a need to break changes down into smaller parts.
A few questions could be investigated when performing Volume and Variety of
refactoring:

– How can large refactoring operations be planned?
– How can undo-functionality be implemented for large refactorings during the

actual refactoring?
– How can we proceed to add more functionality during the execution of large

refactorings while ensuring behavior preservation for the existing applica-
tion?

– How can we integrate the plans of implementing large refactorings into the
development process?

– How can we document the status of a large refactoring?

4.1 Refactoring Tools

Various aspects of refactoring need to be considered when automating the appli-
cation of refactoring. These include, but are not limited to, automation, reliabil-
ity, coverage, and scalability of refactoring tools. With regards to automation,
fully automated and semi-automated refactoring tools are beneficial for develop-
ers. For example, adding support of an "undo" feature can facilitate the process



8 Eman Abdullah AlOmar, Mohamed Wiem Mkaouer, and Ali Ouni

of returning the software to its original state in case the effect of refactoring
is not desirable. Reliability indicates whether the software guarantees behavior
preservation of the refactoring transformation. A full guarantee of behavioral
preservation is challenging, thus, an automated refactoring tool should define a
set of pre and post conditions to ensure program correctness after the application
of refactoring. Concerning coverage, refactoring tools should cover a wide range
of refactoring activities that developers could perform, i.e., the tool should be
as complete as possible. It would be worthwhile to have refactoring tools that
support a complete set of refactoring operations of different levels of granularity
(e.g., class, method, package) to improve the system design from different per-
spectives (e.g., code smell removal, adherence to object-oriented design practices
such as SOLID and GRASP, etc). Scalability is another aspect that should be
taken into consideration when constructing refactoring tools.

4.2 Lack of Use

Despite the positive aspects of semi-automated refactoring, many developers con-
tinue to prefer to do refactoring manually, even when the opportunity to use a
refactoring tool presents itself. In the realm of Extract Method refactoring, Kim
et al. [13] found that 58.3% of developers chose to perform their refactorings
manually. Another study by Negara et al. [18] shows that even though the ma-
jority of developers aware of refactoring tools and their benefits, they still chose
to refactor manually. Murphy-Hill et al. [16] found that only 2 out of 16 students
in an object-oriented programming class had previously used refactoring tools.
Another survey by Murphy-Hill [15] found that 63% of surveyed individuals at
an Agile methodology conference used environments with refactoring tools, and
that they use the tools 68% of the time when one is available. This is significant,
since Agile methodologies are generally predisposed to be in favor of refactor-
ing, indicating the general usage must be even lower. Murphy-Hill tempers this
statement by noting the likelihood of bias in the participants’ responses, as well
as the survey size of 112 being non-representative as it is comparatively small
compared to all programmers.

Murphy-Hill also compared studies by Murphy-Hill et al. and Mäntylä et al.
They show that students claim they are more likely to perform Extract Method
refactoring immediately compared to Rename refactoring, yet developers are
8 times as likely to use a Rename refactoring tool than an Extract Method
refactoring tool [14]. Research by Vakilian et al. and Kim et al. also indicate that
the majority of developers would prefer to apply refactorings other than Rename
refactoring manually [25, 13]. There is no clear conclusion for this discrepancy,
but it indicates either an underuse of Extract Method refactoring tools or overuse
of Rename refactoring tools. Ultimately, it seems unrealistic to come to a concrete
conclusion regarding the use of refactoring tools by all developers, but these
findings show strong indirect evidence that refactoring tools are underutilized
compared to their potential.

From big data perspective, these studies suffer from lack of analysis of Value.
There should be an alignment of how tools refactor code with what developers



Title Suppressed Due to Excessive Length 9

are expecting their code to be refactored. So far, existing tools focus on removing
code smells, and improving the design structural measurements, however, and
as seen in Table 2, developers do refactor their code for various reasons that go
beyond these two objectives.

4.3 Lack of Trust

There have been a number of studies and surveys done collecting information on
developers’ aversion to refactoring tools. Surveys by Campbell et al. [8], Pinto et
al. [19], and Murphy-Hill [15] include the same barrier to entry in their findings:
lack of trust . In general, this refers to when a developer is unwilling to give
control over modification of the code base to the refactoring tool due to perceived
potential problems. This can manifest for a number of reasons. The developer
may be unfamiliar with the tool and unwilling to risk experimenting with a
tool that could modify the program in unexpected ways. The developer may be
unfamiliar with the terms the tool uses, or the information it displays, or the
tool may be difficult to learn or use. They may not understand exactly what
the tool intends to change about their program. They may not know how the
tool will affect the style or readability of the code, or they may be familiar with
this and knowingly dislike what it will do to their code. Pinto et al. [19] found
that some developers will avoid suggested refactorings if they would need to
trade readability for atomicity. In any of these scenarios, a more trustworthy
option for the developer would be to rely on their own intuition, abilities, and
experience.

Developers also reported concerns that refactoring tools would implement
poor design choices, either due to bugs in the tool, inconsistencies with the
detection algorithms, or special cases with the code base, such as reflection.
Several popular refactoring tools have been shown to contain such bugs that
modify program behavior without the developer ever knowing [26, 1]. Veracity,
or the extent to which refactorings can be trusted, is emerging problem from big
data perspective.

4.4 Behaviour Preservation

Today, a wide variety of refactoring tools automates several aspects of refac-
toring. However, ensuring the behavior preserving property when building tool-
assisted refactoring is challenging. Several formalisms and techniques have been
proposed in the existing literature to guarantee the behavior preservation and
correctness of refactorings. Actual source code transformation and a set of pre-
conditions are the two main parts for any refactoring operation to be performed
by automated refactorings.

5 Refactoring Recommendation

Performing refactoring in a large software system can be very challenging. While
refactoring is being applied by various developers [5], it would be interesting to



10 Eman Abdullah AlOmar, Mohamed Wiem Mkaouer, and Ali Ouni

evaluate their refactoring practices. We would like to capture and better un-
derstand the code refactoring best practices and learn from these developers so
that we can recommend them for other developers. There is a need to build
a refactoring recommendation system to (1) identify refactoring opportunities
and pinpoint design flaws, and (2) apply refactoring solutions. To support fu-
ture refactorings, structural, semantic, dynamic, and historical information be-
tween code components need to be considered. Recent proposed recommenders
do generate a large list of refactorings to apply. This represents a challenge for
practitioners, since they do not want to lose the identity of their design, also
they cannot fully understand the impact of such large set of code changes. Such
a problem is mapped to big data Volume and Veracity. Furthermore, running
such set of refactoring, requires handling several constraints. it is to satisfy the
correctness of the applied refactorings. Previous studies distinguish between two
kinds of constraints: structural constraints and semantic constraints. Structural
constraints were extensively investigated in the literature. Fowler, for example,
defined in [10] a set of pre and post-conditions for a large list of refactoring oper-
ations to ensure the structural consistency. However, software engineers should
check manually all actors related to the refactoring operation to inspect the
semantic relationship between them. In the next subsections, we further detail
the challenges of establishing the relationship between refactoring and its corre-
sponding target code element(s).

5.1 Structural Relationship

Structural relationships mean selecting quality metrics to measure system im-
provement before and after the application of refactoring that includes method
calls, shared instance variables, or inheritance relationships. Several quality met-
rics have been reported in the literature to capture different aspects of internal
quality attributes. For example, the coupling between object (CBO) metric cor-
relates with coupling, i.e., the higher the CBO value, the higher the coupling
between classes.

5.2 Semantic Relationship

To determine the semantic relationship between code components, textual sim-
ilarity is measured. If the terms of two code components (i.e., class or method)
are very similar, then it is probable that developers used the same terms to ex-
press the responsibilities implemented by the class or the method. For example,
two methods are considered conceptually related if both of these methods per-
form conceptually similar actions. This information is useful for grouping similar
code components together. There are a few quality metrics to capture semantic
similarity (e.g., the conceptual cohesion of classes (C3) and the conceptual cou-
pling between classes (CCBC)). For example, in order to recommend Move Class
refactoring, software module classes having high CCBC values can be grouped
together. Consequently, the changes can be localized easily by developers and
the software will be more manageable and maintainable.



Title Suppressed Due to Excessive Length 11

5.3 Historical Information

The refactoring process can be automated, not only by using the state-of-the-art
features (improving design metrics and quality attributes) but also with contex-
tual features that simulate developers’ presence by using refactoring operations
previously performed by developers. These refactoring operations could be ob-
tained by using refactoring-mining tools such as RefactoringMiner and RefDiff
that identify refactoring applied between two subsequent versions of a software
system.

6 Refactoring Visualization

Visualizing refactoring activity applied to the source code helps provide a big pic-
ture about refactoring. It helps gain insight about the source code and improves
the understandability of the software. However, visualizing large refactoring ac-
tivity presents both technical and cognitive challenges. Particularly, if the code
change is complex and large, the task of detecting refactoring anomalies and
looking for defects becomes more challenging. Developers could perform batch
refactoring or sequence of refactoring operations. Murphy-Hill et al. [17] define
batch refactorings as refactoring operations that are executed within 60 sec-
onds of each other. Their findings show that developers repeat the application
of refactoring, and 40% of refactorings performed using a refactoring tool occur
in batches. Recently, Brito et al. [7] introduced a refactoring graph concept to
assess refactoring over time. The authors analyzed 10 Java projects, extracted
1,150 refactoring subgraphs, and evaluated their properties: size, commits, age,
composition, and developers. To increase the trust between developers and the
tool, Bogart et al. [6] recently extended JDeodorant tool by providing develop-
ers with the possibility of verifying their refactoring outcomes. The extended
tools provide timely visualization of multiple selected refactorings, and detects
whether there is a conflict or not.

Visualizing big data refactoring is not deeply studied or discussed in the
refactoring literature. Refactoring visualization is a vital process since it allows
developers to look at the code and learn how it is organized and how it works.
Further, it assists developers in pinpointing possible bad code smells that violate
design principles, determining which code paths are susceptible to a bug, and
saving development time.

Research in refactoring should expand on refactoring graphs at the method
level, and focus on class and package level refactorings. Also, research could
complement existing git-based (e.g., RefactoringMiner [24] and RefDiff [21]) and
contemporary IDE refactoring tools (e.g., JDeodorant [23] and RefFinder [20])
with visualization features.

7 Conclusion

In this chapter, we have explored various challenges that the rise of refactoring
research has been facing, and which represent interesting research opportunities



12 Eman Abdullah AlOmar, Mohamed Wiem Mkaouer, and Ali Ouni

for the big data community. For each refactoring challenge, we explored its re-
lated studies to understand its growth and complexity, then we discussed how it
is linked to big data dimensions. As we established stronger connections between
refactoring and big data, we hope to see emerging studies leveraging big data
techniques and frameworks to take refactoring research to the next level.



Bibliography

[1] Rafi Almhana, Wiem Mkaouer, Marouane Kessentini, and Ali Ouni. Rec-
ommending relevant classes for bug reports using multi-objective search.
In 2016 31st IEEE/ACM International Conference on Automated Software
Engineering (ASE), pages 286–295. IEEE, 2016.

[2] Eman Abdullah Alomar, Mohamed Wiem Mkaouer, and Ali Ouni. Can
refactoring be self-affirmed? an exploratory study on how developers doc-
ument their refactoring activities in commit messages. In Proceedings of
the 3rd International Workshop on Refactoring, New York, NY, USA, 2019.
ACM.

[3] Eman Abdullah AlOmar, Mohamed Wiem Mkaouer, and Ali Ouni. Toward
the automatic classification of self-affirmed refactoring. Journal of Systems
and Software, page 110821, 2020.

[4] Eman Abdullah AlOmar, MohamedWiemMkaouer, Ali Ouni, and Maroune
Kessentini. On the impact of refactoring on the relationship between quality
attributes and design metrics. In 2019 ACM/IEEE International Sympo-
sium on Empirical Software Engineering and Measurement (ESEM), pages
1–11. IEEE, 2019.

[5] Eman Abdullah AlOmar, Anthony Peruma, Christian D Newman, Mo-
hamed Wiem Mkaouer, and Ali Ouni. On the relationship between de-
veloper experience and refactoring: An exploratory study and preliminary
results. In Proceedings of the IEEE/ACM 42nd International Conference
on Software Engineering Workshops, pages 342–349, 2020.

[6] Alex Bogart, Eman Abdullah AlOmar, Mohamed Wiem Mkaouer, and Ali
Ouni. Increasing the trust in refactoring through visualization. In Proceed-
ings of the IEEE/ACM 42nd International Conference on Software Engi-
neering Workshops, pages 334–341, 2020.

[7] Aline Brito, Andre Hora, and Marco Tulio Valente. Refactoring graphs:
Assessing refactoring over time. arXiv preprint arXiv:2003.04666, 2020.

[8] Dustin Campbell and Mark Miller. Designing refactoring tools for devel-
opers. In Proceedings of the 2nd Workshop on Refactoring Tools, page 9.
ACM, 2008.

[9] Danny Dig, Can Comertoglu, Darko Marinov, and Ralph Johnson. Auto-
mated Detection of Refactorings in Evolving Components, pages 404–428.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

[10] Martin Fowler, Kent Beck, John Brant, William Opdyke, and don Roberts.
Refactoring: Improving the Design of Existing Code. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 1999.

[11] Yoav Goldberg and Omer Levy. word2vec explained: deriving mikolov
et al.’s negative-sampling word-embedding method. arXiv preprint
arXiv:1402.3722, 2014.



14 Eman Abdullah AlOmar, Mohamed Wiem Mkaouer, and Ali Ouni

[12] Shinpei Hayashi, Yasuyuki Tsuda, and Motoshi Saeki. Search-based refac-
toring detection from source code revisions. IEICE TRANSACTIONS on
Information and Systems, 93(4):754–762, 2010.

[13] Miryung Kim, Thomas Zimmermann, and Nachiappan Nagappan. A field
study of refactoring challenges and benefits. In Proceedings of the ACM
SIGSOFT 20th International Symposium on the Foundations of Software
Engineering, page 50. ACM, 2012.

[14] Mika V Mäntylä and Casper Lassenius. Drivers for software refactoring
decisions. In Proceedings of the 2006 ACM/IEEE international symposium
on Empirical software engineering, pages 297–306. ACM, 2006.

[15] Emerson Murphy-Hill. Programmer friendly refactoring tools. 2009.
[16] Emerson Murphy-Hill and Andrew P Black. Refactoring tools: Fitness for

purpose. IEEE software, 25(5), 2008.
[17] Emerson Murphy-Hill, Chris Parnin, and Andrew P Black. How we refactor,

and how we know it. IEEE Transactions on Software Engineering, 38(1):5–
18, 2011.

[18] Stas Negara, Nicholas Chen, Mohsen Vakilian, Ralph E Johnson, and Danny
Dig. A comparative study of manual and automated refactorings. In Euro-
pean Conference on Object-Oriented Programming, pages 552–576. Springer,
2013.

[19] Gustavo H Pinto and Fernando Kamei. What programmers say about refac-
toring tools?: An empirical investigation of stack overflow. In Proceedings
of the 2013 ACM workshop on Workshop on refactoring tools, pages 33–36.
ACM, 2013.

[20] K. Prete, N. Rachatasumrit, N. Sudan, and M. Kim. Template-based recon-
struction of complex refactorings. In 2010 IEEE International Conference
on Software Maintenance, pages 1–10, Sept 2010.

[21] D. Silva and M. T. Valente. Refdiff: Detecting refactorings in version histo-
ries. In 2017 IEEE/ACM 14th International Conference on Mining Software
Repositories (MSR), pages 269–279, May 2017.

[22] Liang Tan and Christoph Bockisch. A survey of refactoring detection tools.
In Software Engineering, 2019.

[23] Nikolaos Tsantalis, Theodoros Chaikalis, and Alexander Chatzigeorgiou.
Jdeodorant: Identification and removal of type-checking bad smells. In
2008 12th European Conference on Software Maintenance and Reengineer-
ing, pages 329–331. IEEE, 2008.

[24] Nikolaos Tsantalis, Matin Mansouri, Laleh M Eshkevari, Davood Mazina-
nian, and Danny Dig. Accurate and efficient refactoring detection in commit
history. In Proceedings of the 40th International Conference on Software
Engineering, pages 483–494. ACM, 2018.

[25] Mohsen Vakilian, Nicholas Chen, Stas Negara, Balaji Ambresh Rajkumar,
Brian P Bailey, and Ralph E Johnson. Use, disuse, and misuse of auto-
mated refactorings. In Proceedings of the 34th International Conference on
Software Engineering, pages 233–243. IEEE Press, 2012.

[26] Mathieu Verbaere, Ran Ettinger, and Oege De Moor. Jungl: a scripting
language for refactoring. In Proceedings of the 28th international conference
on Software engineering, pages 172–181. ACM, 2006.



Title Suppressed Due to Excessive Length 15

[27] Zhenchang Xing and Eleni Stroulia. Umldiff: An algorithm for object-
oriented design differencing. In Proceedings of the 20th IEEE/ACM Inter-
national Conference on Automated Software Engineering, ASE ’05, pages
54–65, New York, NY, USA, 2005. ACM.


	Mining and Managing Big Data Refactoring for Design Improvement: Are We There Yet?

