
Refactoring Practices in the Context of Modern Code Review:
An Industrial Case Study at Xerox

Eman Abdullah AlOmar∗, Hussein AlRubaye†, Mohamed Wiem Mkaouer∗, Ali Ouni‡, Marouane Kessentini§
∗Rochester Institute of Technology, Rochester, NY, USA

†Xerox Corporation, Rochester, NY, USA
‡ETS Montreal, University of Quebec, Montreal, QC, Canada

§University of Michigan, Dearborn, MI, USA
eman.alomar@mail.rit.edu, hussein.alrubaye@xerox.com, mwmvse@rit.edu, ali.ouni@etsmtl.ca, marouane@umich.edu

Abstract—Modern code review is a common and essential1

practice employed in both industrial and open-source projects2

to improve software quality, share knowledge, and ensure con-3

formance with coding standards. During code review, developers4

may inspect and discuss various changes including refactoring5

activities before merging code changes in the code base. To date,6

code review has been extensively studied to explore its general7

challenges, best practices and outcomes, and socio-technical8

aspects. However, little is known about how refactoring activities9

are being reviewed, perceived, and practiced.10

This study aims to reveal insights into how reviewers develop11

a decision about accepting or rejecting a submitted refactoring12

request, and what makes such review challenging. We present an13

industrial case study with 24 professional developers at Xerox.14

Particularly, we study the motivations, documentation practices,15

challenges, verification, and implications of refactoring activities16

during code review.17

Our study delivers several important findings. Our results18

report the lack of a proper procedure to follow by developers19

when documenting their refactorings for review. Our survey20

with reviewers has also revealed several difficulties related to21

understanding the refactoring intent and implications on the22

functional and non-functional aspects of the software. In light of23

our findings, we recommended a procedure to properly document24

refactoring activities, as part of our survey feedback.25

Index Terms—Refactoring, Code Review, Software Quality26

I. INTRODUCTION27

The role of refactoring has been growing in practice beyond28

simply improving the internal structure of the code without29

altering its external behavior [1] to become a widespread30

concept for the agile methodologies, and a de-facto practice to31

reduce technical debt [2]. In parallel, contemporary software32

projects adopt code review, a well-established practice for33

maintaining software quality and sharing knowledge about34

the project [3], [4]. Code review is the process of manually35

inspecting new code changes to verify their adherence to36

standards and its freedom from faults [3]. Modern code review37

has emerged as a lightweight, asynchronous, and tool-based38

process with reliance on a documentation of the inspection39

process, in the form of a discussion between the code change40

author and the reviewer(s) [5].41

Refactoring, just like any code change, has to be reviewed,42

before being merged into the code base. However, little is43

known about how developers perceive and practice refactoring44

during the code review process, especially that refactoring, by45

definition, is not intended to alter to the system’s behavior, but 46

to improve its structure, so its review may differ from other 47

code changes. Yet, there is not much research investigating 48

how developers review code refactoring. The research on 49

refactoring has been focused on its automation by identifying 50

refactoring opportunities in the source code, and recommend- 51

ing the adequate refactoring operations to perform [6]–[8]. 52

Moreover, the research on code reviews has been focused on 53

automating it by recommending the most appropriate reviewer 54

for a given code change [3]. However, despite the critical role 55

of refactoring and code review, the innate relationship between 56

them is still largely unexplored in practice. 57

The goal of this paper is to understand how developers 58

review code refactoring, i.e., what criteria developers rely on 59

to develop a decision about accepting or rejecting a submitted 60

refactoring change, and what makes this process challenging. 61

This paper seeks to gain practical insights from the existing 62

relationship between refactoring and code review through the 63

investigation of five main research questions: 64

RQ1. What motivates developers to apply refactorings in the 65

context of modern code review? 66

RQ2. How do developers document their refactorings for code 67

review? 68

RQ3. What challenges do reviewers face when reviewing 69

refactoring changes? 70

RQ4. What mechanisms are used by developers and reviewers 71

to ensure the correctness after refactoring? 72

RQ5. How do developers and reviewers assess and perceive 73

the impact of refactoring on the source code quality? 74

To address these research questions, we surveyed 24 pro- 75

fessional software developers, from the research and develop- 76

ment team, at Xerox. Our survey questions were designed to 77

gather the necessary information that can answer the above- 78

mentioned research questions and insights into the review 79

practices of refactoring activities in an industrial setting. 80

Moreover, we perform a pilot study by comparing between 81

code reviews related to refactoring, and the remaining code 82

reviews, in terms of time to resolution and number of ex- 83

changed responses. Our findings indicate that refactoring- 84

specific code reviews take longer to be resolved and typically 85



triggers more discussions between developers and reviewers86

to reach a consensus. The survey with reviewers, has revealed87

many challenges they are facing when they review refactored88

code. We report them as part of our survey results, and we89

provide some guidelines for developers to follow in order to90

facilitate the review of their refactorings.91

II. RELATED WORK92

A. Surveys & Case Studies on Refactoring93

Prior works have conducted literature surveys on refactoring94

from different aspects. The focus of these surveys ranges95

between investigating the impact of refactoring on software96

quality [13], to comparing refactoring tools [9], and exploring97

refactoring challenges and practices [10]–[12], [14], [15].98

These studies are depicted in Table I.99

Murphy-Hill & Black [9] surveyed 112 Agile Open North-100

west conference attendees and found that refactoring tools are101

underused by professional programmers. In an explanatory102

survey involving 33 developers, Arcoverde et al. [10] studied103

how developers react to the presence of design defects in104

the code. Their primary finding indicates that design defects105

tend to live longer due to the fact that developers avoid106

performing refactoring to prevent unexpected consequences.107

Yamashita & Moonen [11] performed an empirical study in108

commercial software to evaluate the severity of code smells109

and the usefulness of code smell-related tooling. The authors110

found that 32% of the interviewed developers are unaware111

of code smells, and refactoring tools should provide better112

support for refactoring suggestions. Kim et al. [12] surveyed113

328 professional software engineers at Microsoft to investigate114

when and how they do refactoring. When surveyed, the de-115

velopers cited the main benefits of refactoring to be: improved116

readability (43%), improved maintainability (30%), improved117

extensibility (27%) and fewer bugs (27%). When asked what118

provokes them to refactor, the main reason provided was poor119

readability (22%). Only one code smell, i.e., code duplication,120

was reported (13%). Szoke et al. [13] conducted 5 large-scale121

industrial case studies on the application of refactoring while122

fixing coding issues; they have shown that developers tend123

to apply refactorings manually at the expense of a large time124

overhead. Sharma et al. [14] surveyed 39 software architects125

asking about the problems they faced during refactoring tasks126

and the limitations of existing refactoring tools. Their main127

findings are: (1) fear of breaking code restricts developers128

to adopt refactoring techniques; and (2) refactoring tools129

need to provide better support for refactoring suggestions.130

Newman et al. [15] conducted a survey of 50 developers131

to understand their familiarity with transformation languages132

for refactoring. They found that there is a need to increase133

developer confidence in refactoring and transformation tools.134

B. Refactoring Awareness & Code Review135

Research on modern code review topics has been of import-136

ance to practitioners and researchers. A considerable effort is137

spent by the research community in studying traditional and138

modern code review practices and challenges. This literature139

has been includes case studies (e.g., [4], [16]), user studies 140

(e.g., [17]), and surveys (e.g., [3], [18]). However, most of the 141

above studies focus on studying the effectiveness of modern 142

code review in general, as opposed to our work that focuses on 143

understanding developers’ perception of code review involving 144

refactoring. In this section, we are only interested in research 145

related to refactoring-aware code review. 146

In a study performed at Microsoft, Bacchelli and Bird [3] 147

observed, and surveyed developers to understand the chal- 148

lenges faced during code review. They pointed out purposes for 149

code review (e.g., improving team awareness and transferring 150

knowledge among teams) along with the actual outcomes 151

(e.g., creating awareness and gaining code understanding). In 152

a similar context, MacLeod et al. [18] interviewed several 153

teams at Microsoft and conducted a survey to investigate the 154

human and social factors that influence developers’ experi- 155

ences with code review. Both studies found the following 156

general code reviewing challenges: (1) finding defects, (2) 157

improving the code, and (3) increasing knowledge transfer. 158

Ge et al. [16] developed a refactoring-aware code review tool, 159

called ReviewFactor, that automatically detects refactoring 160

edits and separates refactoring from non-refactoring changes 161

with the focus on five refactoring types. The tool was inten- 162

ded to support developers’ review process by distinguishing 163

between refactoring and non-refactoring changes, but it does 164

not provide any insights on the quality of the performed 165

refactoring. Inspired by the work of [16], Alves et al. [17] 166

proposed a static analysis tool, called RefDistiller, that helps 167

developers inspect manual refactoring edits. The tool compares 168

two program versions to detect refactoring anomalies’ type 169

and location. It supports six refactoring operations, detects 170

incomplete refactorings, and provides inspection for manual 171

refactorings. 172

To summarize, existing studies mainly focus on proposing 173

and evaluating refactoring tools that can be useful to support 174

modern code review, but the perception of refactoring in 175

code review remains largely unexplored. To the best of our 176

knowledge, no prior studies have conducted case studies in 177

an industrial setting to explore the following five dimensions: 178

(1) developers motivations to refactor their code, (2) how 179

developers document their refactoring for code review, (3) 180

the challenges faced by reviewers when reviewing refactoring 181

changes, (4) the mechanisms used by reviewers to ensure the 182

correctness after refactoring, and (5) developers and reviewers 183

assessment of refactoring impact on the source code’s quality. 184

Previous studies, however, discussed code review motivations 185

and challenges in general [3], [4], [18]. To gain more in-depth 186

understanding of the above-mentioned five dimensions, in this 187

paper, we surveyed several developers at Xerox. 188

III. STUDY DESIGN 189

A. Research Questions 190

RQ1. What motivates developers to apply refactorings 191

in the context of modern code review? Several motivations 192

behind refactoring have been reported in the literature [1], 193



Table (I) Related work in industrial case study & survey on refactoring.
Study Year Research Method Focus Single/Multi Company Subject/Object Selection Criteria # Participants

Murphy-Hill & Black [9] 2008 Survey Refactoring tools Yes/No programmers 112
Arcoverde et al. [10] 2011 Survey Longevity of code smells No/Yes belongs to development team 33
Yamashita & Moonen [11] 2013 Survey Developer perception of code smells No/Yes developers 85
Kim et al. [12] 2014 Survey & Interview Refactoring challenges & benefits Yes/No has change messages including "refactor*" 328

within last 2 years
Szoke et al. [13] 2014 Case Study & Survey Impact of refactoring on quality No/Yes developers 40
Sharma et al. [14] 2015 Survey Challenges & solutions for refactoring adoption Yes/No architects 39
Newman et al. [15] 2018 Survey Developer familiarity of transformation No/Yes has “development” in job title & not students 50

languages for refactoring or faculty members

            Review Request 
        Open

                Review Request 
               Under Revision

                Review Request 
              Approved

               Review Request 
             Under ReviewCreate Review

Request

Revisions Requested

Changes Approved

Reviewer Assigned

Revisions Completed

Figure (1) Review process overview.

[12], [19]–[21]. Our first research question seeks to understand194

what motivations drive code review involving refactoring in195

various development contexts to augment our understanding196

of refactorings in theory versus in practice.197

RQ2. How do developers document their refactorings198

for code review? Since there is no consensus on how to199

formally document refactoring activities [22]–[24], we aim in200

this research question to explore what information developers201

have explicitly provided, and what keywords developers have202

used when documenting refactoring changes for a review.203

This question aims to capture the taxonomy used and observe204

whether it is currently helpful in providing enough insights for205

reviewers to be able to adequately assess the proposed changes206

to the software design.207

RQ3. What challenges do reviewers face when reviewing208

refactoring changes? We investigate the challenges associated209

with refactoring, as well as the bad refactoring practices that210

developers catch when reviewing refactoring changes. This211

sheds light on how developers should mitigate some of these212

challenges.213

RQ4. What mechanisms are used by developers and214

reviewers to ensure code correctness after refactoring?215

We pose this research question to study current approaches216

for testing behavior preservation of refactoring, and to get217

an overview of what different criteria are addressed by these218

approaches.219

RQ5. How do developers and reviewers assess and per-220

ceive the impact of refactoring on the source code quality?221

Finally, in our last research question, we are interested in222

understanding how refactoring connects current research and223

practice. This helps exploring if the implications or outcomes224

of refactoring-aware code review match what outlined in the225

previous research questions.226

B. Research Context and Setting227

Host Company and Object of Analysis. To answer the228

above-mentioned research questions, we conducted our survey229

with developers from the research and development division, 230

at Xerox Research Center Webster (XRCW), currently Xerox’s 231

largest research center. The research and development di- 232

vision is responsible for implementing and maintaining the 233

software that is currently being shipped with Xerox Printers, 234

(i.e., ConnectKey interface technology1). The software is 235

directly connected to the hardware and performs various 236

operations going from basic scanning and printing to more 237

complex commands such as exchanging with cloud services. 238

The software is constructed using object-oriented, object-based 239

and markup languages. Despite being a legacy, around 20 240

years old, lengthy and complex software, the developers in 241

charge have been successfully evolving it to meet business 242

requirements and provide secure and reliable functionality to 243

end users. This reflects the maturity of the engineering process 244

within the research and development division, which raised 245

our interest to understand how they perform code review in 246

general, and how they review refactoring in particular. 247

Code Review Process at Xerox. The research and devel- 248

opment division uses a collaborative code review framework 249

allowing developers to directly tag submitted code changes 250

and request its assignment to a reviewer. Similar to existing 251

modern code review platforms, e.g., Gerrit2, a code change 252

author opens a code Review Request (ReR) containing a title, a 253

detailed description of the code change being submitted, writ- 254

ten in natural language, along with the current code changes 255

annotated. Once an ReR is submitted, it appears in the requests 256

backlog, open for reviewers to choose. If an ReR remains 257

open for more than 72 hours, a team leader would handle its 258

assignment to reviewers. Once reviewers are assigned to the 259

ReR, they inspect the proposed changes and comment on the 260

ReR’s thread, to start a discussion with the author, just like 261

a forum or a live chat. This way, the authors and reviewers 262

can discuss the submitted changes, and reviewers can request 263

revisions to the code being reviewed. Following up discussions 264

and revisions, a review decision is made to either accept (i.e., 265

ship it!) or decline, and so the proposed code changes are 266

either “Merged” to production or “Abandoned”. An activity 267

diagram, modeling a simplified bird’s view of the code review 268

process, is shown in Figure 1. 269

C. Pilot Study and Motivation 270

Rationale. As we were analyzing the review process, to 271

prepare our survey, we had access to the code review plat- 272

form, containing the team’s history of processed ReRs for 273

1https://www.xerox.com/en-us/innovation/insights/connectkey-interface-technology
2https://www.gerritcodereview.com/

https://www.gerritcodereview.com/


Table (II) Summary of survey questions (the full list is available in [25]).

Category Question

Background (1) How many years have you worked in the software industry?
(2) How many years have you worked on refactoring?
(3) How many years have you worked on code review?

Motivation (4) As a code change author, in which situation(s) you typically refactor the code?
Documentation (5) As a code change author, what information do you explicitly provide when documenting your refactoring activity?

(6) As a code change author, what phrases (keywords) have you used when documenting refactoring changes for a review?
Challenge (7) As a code reviewer, what challenges have you face when reviewing refactoring changes?

(8) As a code reviewer, what are the bad refactoring practices you typically catch when reviewing refactoring changes?
Verification (9) As a code change author/code reviewer, what mechanism(s) do you use to ensure the correctness after the application of refactoring?
Implication (10) As a code reviewer, what implication(s) do you typically experience as software evolves through refactoring?

(11) How strongly do you agree with each of the following statements?

• I have guidelines on how to document refactoring activities.
• I have guidelines on how to review refactoring activities while performing code review.
• Reviewing refactoring activities slow down the review process.
• Reviewing refactoring typically takes longer to reach a consensus.

Table (III) Participant professional development experience
in years.

Years of Experi-
ence

Industrial
Experience (%)

Refactoring Ex-
perience (%)

Code Review Ex-
perience (%)

1-5 9 (37.5%) 15 (62.5%) 14 (58.33%)
6-10 5 (20.83%) 3 (12.5%) 4 (16.66%)
11-15 4 (16.66%) 1 (4.16%) 2 (8.33%)
16+ 6 (25%) 5 (20.83%) 4 (16.66%)

the ConnectKey software system. After reviewing various274

ReRs, we noticed the existence of a number of refactoring-275

specific ReRs, i.e., requests to specifically review a refactored276

code. The existence of such refactoring ReRs raised our277

curiosity to further study in deeper whether these ReRs are278

more difficult to resolve than other non-refactoring ReRs. We279

hypothesize that refactoring ReRs, take longer time and trigger280

more discussions between developers and reviewers before281

reaching a decision and closing the ReR. If such hypothesis282

holds, then it further justifies the need for a more detailed283

survey targeting these refactoring ReRs.284

Extraction of Review Requests Metadata. We aim to285

identify all recent refactoring ReRs. Similarly to Kim et al.286

[12], we start with scanning the ReRs repository to distin-287

guish ReRs whose title or description contains the keyword288

“refactor*”. We only considered recent reviews, which were289

created between January 2019 and December 2019. We chose290

to analyze recent ReRs to maximize the chance of developers,291

who authored or reviewed them, as still within the company.292

We manually analyze the extracted set to verify that each293

selected ReR is indeed about requesting the review of a294

proposed refactoring. This extraction and filtering process295

resulted in identifying 161 refactoring ReR. To perform the296

comparison, we need to sample 161 non-refactoring ReR from297

the remaining ones in the review framework. To ensure the298

representativeness of the sample, we use the stratified random299

sampling by choosing ReRs which were (1) created between300

January 2019 and December 2019; (2) created by the same301

set of authors of the refactoring ReRs; and (3) created to302

update the same subsystem(s) that were also updated by the303

refactoring ReRs.304

We then compared both groups based on two factors: (1) re- 305

view duration (time from starting the review until a decision of 306

close/merge is made), and (2) number of exchanged responses 307

(i.e., review comments) between the author and reviewer(s). 308

Figure 2 reports the boxplots depicting the distribution of 309

each group values, clustered by two above-mentioned factors. 310

To test the significance of the difference between the groups 311

values, we use the Mann-Whitney U test, a non-parametric 312

test that checks continuous or ordinal data for a significant 313

difference between two independent groups. Our hypothesis 314

is formulated to test whether the values of the refactoring 315

ReRs group is significantly higher than the values of the 316

non-refactoring ReRs group. The difference is considered 317

statistically significant if the p-value is less than 0.05. 318

Pilot Study Results. According to Figure 2, refactoring 319

code reviews take longer to be completed than the non- 320

refactoring code reviews, as the difference was found to be 321

statistically significant (i.e., p< 0.05). Similarly, refactoring 322

code reviews were found to significantly trigger longer dis- 323

cussion between the code author and the reviewers before 324

reaching a consensus (i.e., p< 0.05). This motivates us to 325

better understand the challenges reviewers face when review- 326

ing refactoring. We designed our survey to ask developers 327

of this team about the kind of problems that triggers them 328

to refactor, and to close the loop, we asked reviewers about 329

what they foresee when they are assigned a refactoring code 330

review, along with the issues they typically face for that type 331

of assignment. The next subsection details our survey design. 332

D. Research Method 333

To answer our research questions, we follow a mixture 334

qualitative and quantitative survey questions, as demonstrated 335

in Creswell’s design [26]. The quantitative analysis was per- 336

formed by the analysis of ReRs metadata, and the comparison 337

between refactoring ReRs and non-refactoring ReRs, in terms 338

of time to completion and number of exchanged responses. 339

Developers survey constitutes the qualitative aspect that we 340

are going to detail in the next section. 341

Survey Design. For our survey design, we followed the 342

guidelines proposed by Kitchenham and Pfleeger [27]. To 343



(a) Review duration

(b) Number of exchanged responses

Figure (2) Boxplots of (a) review duration and (b) number
of exchanged responses, for refactoring and non-refactoring
code review.

increase the participation rate, we made our survey anonym-344

ous. The survey consisted of 11 questions that are divided345

into 2 parts. The first part of the survey includes demo-346

graphics questions about the participants. In the second part,347

we asked about the (1) motivations behind refactoring, (2)348

documentation of refactoring changes, (3) challenges faced349

when reviewing refactoring, (4) verification of refactoring350

changes, and (5) implications of refactoring on code quality.351

As suggested by Kitchenham and Pfleeger [27], we constructed352

the survey to use a 5-point ordered response scale (“Likert353

scale”) question on the general refactoring-related code review,354

2 open-ended questions on the refactoring documentation and355

challenges, and 5 multiple choice questions on the refactor-356

ing motivations, documentation, mechanisms and implications357

with an optional “Other” category, allowing the respondents358

to share thoughts not mentioned in the list. Table II contains359

a summary of the survey questions; the full list is available360

in [25]. In order to increase the accuracy of our survey, we361

followed the guidelines of Smith et al. [28], and we targeted362

developers who have previously been exposed to refactoring363

in the considered project. So instead of broadcasting the364

survey to the entire development body, we only intend to365

contact developers who have previously authored or reviewed366

a refactoring code change. We performed this subject selection367

criteria to ensure developers’ familiarity with the concept of368

refactoring so that they can be more prepared to answer the369

questions. This process resulted in emailing 38 target subjects370

who are currently active developers and regularly perform371

code reviews. Participation in the survey was voluntary. In372

total, 24 developers participated in the survey (yielding a373

response rate of 63%, which is considered high for software374

engineering research [28]). The industrial experience of the375

respondents ranged from 1 to 35 years, their refactoring 376

experience ranged from 1 to 30 years, and their experience 377

in code review ranged from 1 to 25 years. On average, the 378

participants had 10.7 years of experience in industry, 7.5 years 379

of experience in refactoring, and 6.97 years of experience in 380

code review. Table III summarizes developers’ experience in 381

industry, refactoring and code review. 382

IV. RESULTS & DISCUSSIONS 383

In the following, we report the results of our research 384

questions. Note that the total sum for some survey results is 385

over 100% as participants could select more than one option. 386

A. RQ1. What motivates developers to apply refactorings in 387

the context of modern code review? 388

Figure 3 shows developers’ intentions when they refactor 389

their code. The Code Smell and BugFix categories had the 390

highest number of responses, with a response ratio of 23.7% 391

and 22.4%, respectively. The category Functional was the 392

third popular category for refactoring-related commits with 393

21.1%, followed by the Internal Quality Attribute and External 394

Quality Attribute, which had a ratio of 17.1% and 14.5%, 395

respectively. However, we observe that all motivations do not 396

significantly vary as all of them are in the interval 14.5% to 397

23.7% with no dominant category, as can be seen in Figure 3. 398

Only one participant selected the “other” option stating that, 399

“When i feel it’s painful to fulfill my current task without 400

refactoring”. 401

If we refer to the Fowler’s refactoring book [1], refactoring 402

is mainly solicited to enforce best design practices, or to cope 403

with design defects. With bad programming practices, i.e., 404

code smells, earning 24% of developer responses, these results 405

do not deviate from the Fowler’s refactoring guide. However, 406

even though the code smell resolution category is prominent, 407

the observation that we can draw is that motivations driving 408

refactoring vary from structural design improvement to feature 409

additions and bug fixes, i.e., developers interleave refactoring 410

with other development tasks. This observation is aligned with 411

the state-of-the-art studies by Kim et al. [12], Silva et al. 412

[19], and AlOmar et al. [21]. The sum of the design-related 413

categories, namely code smell, internal, and external quality 414

attributes represent the majority with 55.3%. These categories 415

encapsulate all developers’ design-improvement changes that 416

range from low level refactoring changes such as renaming 417

elements to increase naming quality in the refactored design, 418

and decomposing methods to improve the readability of the 419

code, up to higher level refactoring changes such as re- 420

modularizing packages by moving classes, reducing class-level 421

coupling, increasing cohesion by moving methods, etc. 422

Summary: According to the survey, coping with poor
design and coding style is the main driver for de-
velopers to apply refactoring in their code changes.
Yet, functional changes and bug fixing activities often
trigger developers to refactor their code as well.

423



Code Smell
23.7% Internal QA

17.1%

Functional
21.1%

BugFix
22.4%

External QA 14.5%

Other 1.3%

Figure (3) Developers’ refactoring motivations for code re-
view.

B. RQ2. How do developers document their refactorings for424

code review?425

When we asked developers, “what information do you expli-426

citly provide when documenting your refactoring activity?”, 21427

out of the 24 developers (91.3%) indicated that they explicitly428

mention the motivation behind the application of refactoring429

such as ‘improving readability’ and ‘eliminate code smell’.430

Moreover, only 8 out of the 24 developers (34.8%) indicated431

their refactoring strategy by stating explicitly the type of432

refactoring operation they perform in their submitted code433

change description, such as ‘move class’. We observe that434

developers are eager to explain the rationale of their refact-435

oring more than the actual refactoring operations performed.436

Due to the nature of inspection, developers need to develop a437

“case” to justify the need for refactoring, in order to convince438

the reviewers. Therefore, the majority of participants (91.3%)439

focus on reporting the motivation rather than the operation.440

Moreover, the identification of the operations can be deducted441

by the reviewers when they inspect the code before and after442

its refactoring. Finally, only a few respondents (6 participants)443

responded that they thoroughly document their refactoring by444

reporting both the motivation and operation.445

Moreover, when we asked, “what typical keywords you446

use when documenting refactoring changes for a review?”,447

the developers answers contain various refactoring phrases.448

Table IV enumerates these patterns (keywords in bold indicate449

that the keyword was mentioned by more than one developer).450

Table IV is quite revealing in several ways. First, we observe451

that developers state the motivation behind refactoring, and452

that some of these patterns are not restricted only to fixing453

code smells, as in the original definition of refactoring in454

Fowler’s book [1]. Second, developers tend to use a variety of455

textual patterns to document their refactoring activities, such as456

‘refactor’, ‘clean up’, and ‘best practice’. These patterns can457

be (1) generic to describe the act of refactoring without giving458

any details; or (2) specific to give more insights on how mainly459

provide a generic description/motivation of the refactoring460

activity such as ’improving readability’. A common trend461

amongst developers is that they either report a problem to462

indicate that refactoring action is needed (e.g., ‘duplicate’,463

‘bugs’, ‘bad code’, etc.), or they state the improvement to the464

Table (IV) List of refactoring keywords reported by the
participants.

Patterns

(1) allow easier integration with (16) fix (31) remove legacy code
(2) bad code (17) improving code quality (32) replace hard coded
(3) bad management (18) loose coupling (33) reorganiz*
(4) best practice (19) moderniz* (34) restructur*
(5) break out (20) modif* (35) rewrit*
(6) bugs (21) modulariz* (36) risks
(7) cleanup (22) not documented (37) simply
(8) cohesion (23) open close (38) single responsibility
(9) comment (24) optimiz* (39) single level of abstraction
(10) complexity (25) performance per function
(11) consistency (26) readability (40) splitting logic
(12) decouple (27) redundancy (41) strategy pattern
(13) duplicate (28) refactor* (42) stress test results
(14) ease of use (29) regression (43) testing
(15) extract class (30) remov* (44) uncomment

code after the application of refactoring (e.g., ‘best practice’, 465

‘ease of use’, ‘improving code quality’, etc.). By looking at 466

the refactoring discussion (see Figure 2), we realized that 467

developers do ask for more details to understand the performed 468

refactoring activities. 469

Summary: Developers rarely report specific refactor-
ing operations as part of their documentation. Instead,
they use general keywords to indicate the motivation
behind their refactorings. Nevertheless, several pat-
terns are solicited by developers to describe their re-
factorings. With the lack of refactoring documentation
guidelines, reviewers are forced to ask for more details
in order to recognize the need for refactoring.

470

C. RQ3. What challenges do reviewers face when reviewing 471

refactoring changes? 472

As shown in Figure 4, we report the main challenges faced 473

by reviewers when inspecting a refactoring review request. 474

The majority of the developers (17 respondents (70.8%)) 475

communicated that they were concerned about avoiding the 476

introduction of regression in system’s functionality. Interest- 477

ingly, refactoring by default, ensures the preservation of the 478

system’s behavior through a set of pre and post conditions, 479

yet, reviewers main focus was to validate the behavior of 480

the refactored code. In this context, a recent study have 481

shown that developers do not rely on built-in refactoring 482

in their Integrated Development Environments (IDEs) and 483

they perform refactoring manually [19], e.g., when moving 484

a method from one class to another, instead of activating 485

the ‘move method’ from the refactoring menu, developers 486

prefer to cut and paste the method declaration into its new 487

location, and manually update any corresponding memberships 488

and dependencies. Such process is error prone, and therefore, 489

reviewers tend to treat refactoring like any other code change 490

and inspect the functional aspect of any refactored code. 491

In Figure 4, 14 developers (58.3%) revealed the need to 492

investigate the impact of refactoring on software quality. 493

Such investigation is not trivial, as it has been the focus of 494

a plethora of previous studies (e.g., [29]), finding that not 495



all refactoring operations have beneficial impact on software496

quality, and so developers need to be careful as various design497

and coding defects may require different types of refactorings.498

In this context, we identified, in our previous study [23] which499

structural metrics (coupling, complexity, etc.) are aligned500

with the developer’s perception of quality optimization when501

developers explicitly mention in their commit messages that502

they refactor to improve these quality attributes. Interestingly,503

we observed that, not all structural metrics capture developers504

intentions of improving quality, which indicated the existence505

of a gap between what developers consider to be a design506

improvement, and their measurements in the source code.507

When asked about their quality verification process, developers508

use, as part of their internal process, the Quality Gate of509

SonarQube. While SonarQube is a popular, widely adopted510

quality framework, it suffers, like any other static analysis511

tools, from the high false positiveness of its findings, when512

it is not properly tuned.513

A moderate subset of 11 developers (45.8%) were con-514

cerned about having inadequate documentation about refact-515

oring, whereas 10 developers (41.7%) were concerned about516

understanding the motivations for refactoring changes. 9 de-517

velopers (37.5%) found that reviewing refactoring changes in a518

timely manner is difficult, whereas 6 of them (25%) found that519

the challenge is centered around understanding how refactor-520

ing changes were implemented. In addition to these challenges,521

two participants stated, “The quality of code readability (being522

able to understand what the code author intended to do with523

the logic/algorithm even without documentation”, and “Style524

changes or personal preference that the author holds and feels525

strongly about”.526

To get a more qualitative sense, we also study bad refactor-527

ing practices that reviewers catch when reviewing refactoring528

changes. We analyzed the survey responses to this open ques-529

tion to create a comprehensive high-level list of bad refactoring530

practices that are being caught by reviewers. These practices531

are centered around five main topics: (1) interleaving refact-532

oring with multiple other development-related tasks, (2) lack533

of refactoring documentation, (3) avoiding refactoring negative534

side effects on software quality, (4) inadequate testing, and (5)535

lack of design knowledge. In the rest of this subsection, we536

provide more in-depth analysis of these refactoring practices.537

Challenge #1: Interleaving refactoring with multiple other538

development-related tasks. One participant indicated that,539

“Refactoring changes are intermixed with bug fix changes”540

and another mentioned “Refactoring after adding to many541

features”, indicating that these practices are not desirable when542

performing or reviewing refactoring changes. This suggests543

that interleaving refactoring with bug fixes and new features544

could be a challenge from a reviewer’s point of view. Even545

though we did not ask a specific question concerning interleav-546

ing refactorings with other development-related context, three547

participants acknowledged that mixing refactoring with any548

other activity is a potential problem. This can be explained by549

the fact that behavior preservation cannot be guaranteed and550

it may introduce new bugs. 551

Challenge #2: Lack of refactoring documentation. 552

In contrast with how developers document bug fixes and 553

functional changes, the documentation of refactoring seems to 554

be vague and unstructured. If we refer to our findings in our 555

previous research question, developers lack guidelines on how 556

to describe their refactoring activities, and they refer to their 557

personal interpretation to justify their decisions. To mitigate 558

this ambiguity, there is a need for proper methodology that 559

articulates how developers should document refactoring code 560

changes. Reviewers did explicitly share their concerns during 561

the survey: 562

“1. Lack of documentation, 2. Inconsistent variable nam- 563

ing, 3. Unorganized code, 4. No explanation why changes 564

were made [...]”; “[...],no guideline, different guidelines 565

used in the project, bad code practices”; “[...] Not enough 566

comments” 567

Challenge #3: Avoiding refactoring negative side effects on 568

software quality. The majority of the participants commented 569

that wrongly naming code elements and duplicate code are the 570

common bad refactoring practices that they typically catch. It 571

has been proven by previous studies that a developer may 572

accidentally introduce a design anti-pattern while trying to 573

fix another (e.g., [30]). One mentioned example was how a 574

long method (large in lines of code, and has more than one 575

functionality) can be fixed by splitting the method into two, 576

using the extract method refactoring operation. However, if the 577

split does not create two cohesive methods (i.e., segregation 578

of concerns), then the results could be two tightly coupled 579

methods, which one method can envy the other method’s 580

attributes (i.e., feature envy anti-pattern). Thus, it is part of the 581

code review to verify the impact of refactoring on the software 582

design from different perspectives (e.g., code smell removal, 583

adherence to object-oriented design practices such as SOLID 584

and GRASP, etc.). We report samples of the participants’ 585

comments below to illustrate this challenge: 586

“Poorly named methods, poorly named variables, lack of 587

basic Object Oriented Design principles and concepts, 588

increased complexity, increased coupling.”; “duplication, 589

low-cohesion”; “Code refactoring does not follow the 590

coding standards set by the project. [...]”; “Tight coup- 591

ling, Lack of tests, convoluted logic, inconsistent variable 592

names, outdated comments” 593

Challenge #4: Inadequate testing. By default, refactoring is 594

supposed to preserve the behavior of the software. Ideally, 595

using the existing unit tests to verify that the behavior is 596

maintained should be sufficient. However, since refactoring 597

can also be interleaved with other tasks, then there might be a 598

change in the software’s behavior, and so, unit tests, may not 599

capture such changes if they were not revalidated to reflect 600

the newly introduced functionality. This can be a concern 601

if developers are unaware of such non behavior preserving 602

changes, and so, deprecated unit tests will not guarantee the 603



refactoring correctness. The following reviewers’ comments604

illustrate this challenge:605

“1) Not testing refactor code changes on all potential606

impacted areas 2) Not adding newly named functions to607

old test suites [...]”; “[...] partial testing process”; “[...]608

No follow-up testing”; “[...] No regression testing”; “Tight609

coupling, Lack of tests [...]”610

Challenge #5: Lack of design knowledge. Developers typ-611

ically refactor classes and methods that they recently and612

frequently change. So, the more they change the same code613

elements, the more confident they become about their design614

decisions. However, not all team members have access to all615

software codebase, and so they do not draw the full picture616

of the software design, which makes their decision adequate617

locally, but not necessarily at the global level. Moreover,618

developers only reason on the actual screenshot of the current619

design, and there is no systematic way for them to recognize620

its evolution by, for instance, accessing previously performed621

refactorings. This may also narrow their decision making, and622

they may end up reverting some previous refactorings. These623

concerns along others were also raised by participants, for624

instance, one participant stated:625

“Lack of knowledge about existing design patterns in code626

(strategy, builder, etc.) and their context along with lack627

of knowledge about SOLID principles (especially open628

close and dependency inversion). I’ve seen people claim629

that the code cannot be tested but in reality the problem630

is in the way they’ve structured their code.”631

It is clear that the code review plays also a major role in632

knowledge transfer between junior and senior developers, and633

in educating software practitioners about writing clean code634

that meet quality standards.635

Summary: Challenges of reviewing refactored code
inherits challenges of reviewing traditional code
changes, as refactoring can also be mixed with func-
tional changes. Reviewers also report the lack of
refactoring documentation, and inspect any negative
side effects of refactorings on design quality The
inadequate testing of such changes hinder the safety
of the performed refactoring. Finally, the lack of de-
veloper’s exposure to whole system design can reduce
the visibility of their refactoring decision making.

636

D. RQ4. What mechanisms are used by developers and re-637

viewers to ensure code correctness after refactoring?638

Developers reported mechanisms to verify the application639

of refactoring (see Figure 5). 23 of the participants (95.8%)640

refer to testing the refactored code; 17 (70.8%) reported641

doing manual validation; 11 (45.8%) brought up ensuring the642

improvement of software quality metrics; 9 (37.5%) mentioned643

using visualization techniques; and 9 (37.5%) selected running644

static checkers and linters. Besides performing testing, two645

participants mentioned in the “other” option: “Automated Test646

Coverage”, and “Existing Unit tests”.647

We observe that reviewers treat refactoring like any tra- 648

ditional code change, and they unit-test it for correctness. 649

This eventually minimizes the introduction of faults. However, 650

when developers assume refactoring is preserving the behavior, 651

while it is not, then they may not have updated their unit 652

tests, and so their execution later by reviewers can become 653

unpredictable, i.e., some test cases may or may not fail because 654

of their deprecation. Furthermore, some refactoring operations, 655

such as ’extract method’, do create new code elements that 656

are not covered by unit tests. So reviewers need to enforce 657

developers to write test cases for any newly introduced code. 658

Reviewers also refer to the quality gate to inspect if they 659

refactoring did not introduce any design debt or anti-patterns 660

in the system. Yet, the manual inspection of the code is still the 661

rules, some reviewers refer to visualizing the code before and 662

after refactoring to verify the completeness of the refactoring. 663

Summary: Since reviewers unit test refactoring, just
like any other code change, developers need to add or
update unit tests to the newly introduced or refactored
code. Furthermore, reviewers are manually inspecting
the refactored code to guarantee its correctness.

664

E. RQ5. How do developers and reviewers assess and perceive 665

the impact of refactoring on the source code quality? 666

As can be seen from Figure 6, all participants (24, 100%) 667

replied that the code becomes more readable and understand- 668

able. Intuitively, the main purpose of refactoring, is to ease 669

the maintenance and evolution of software. So reviewers, 670

implicitly consider refactoring to be an opportunity to clean 671

the code and make it adhere to the team’s coding conventions 672

and style. Also, 12 (50%) indicated that it becomes easier to 673

pass Sonar Qube’s Quality Gate. So, it is expected that the 674

refactored code does not increase the quality deficit index, if 675

not decreasing it. Finally, 11 (45.8%) stated their expectation 676

that refactored, through better renames, and more modular 677

objects, should reduce the code’s proneness to bugs. 678

Summary: Besides using Quality Gates and static
checkers to assess the impact of refactoring on the
software design, reviewers rate the success of refact-
oring to the extent to which the refactored code has
improved in terms of readability and understandability.

679

V. RECOMMENDATIONS 680

A. Recommendations for Practitioners 681

It is heartening for us to realize that developers refactor 682

their code and perform reviews for the refactored code. Our 683

main observation, from developers’ responses, is how the 684

review process for refactoring is being hindered by the lack 685

of documentation. Therefore, as part of our survey report to 686

the company, we designed a procedure for documenting any 687

refactoring ReR, respecting three dimensions that we refer to 688



0 20 40 60 80 100

Understanding how refactoring
changes were implemented

Reviewing refactorings in
timely manner

Inadequate documentation
about refactoring

Understanding the motivation
behind refactoring

Understanding the impact of
refactoring on quality

Avoiding the introduction of
regression in system functionalities 70.8

58.3

45.8

41.7

37.5

25

Figure (4) Challenges faced by developers when reviewing
refactoring.

0 20 40 60 80 100

Running static checkers and
linters

Visualization of refactored
code

Ensuring the improverment
software quality metrics

Manual validation / experience

Testing by running the old
version and the new versions

and make sure they still
give the same result

95.8

70.8

45.8

37.5

37.5

Figure (5) Mechanisms used to ensure the correctness after
the application of refactoring.

0 20 40 60 80 100

Code becomes less prone
to bugs and errors

It becomes easier to
pass quality gate

Code becomes more
readable and understandable 100

50

45.8

Figure (6) Implications experienced as software evolves
through refactoring.

as the three Is, namely, Intent, Instruction, and Impact. We689

detail each one of these dimensions as follows:690

Intent. According to our survey results, (cf., Figure 3), it691

is intuitive that reviewers need to understand the purpose of692

the intended refactoring as part of evaluating its relevance.693

Therefore, when preparing the request for review, developers694

need to start with explicitly stating the motivation of the695

refactoring. This will provide the context of the proposed696

changes, for the reviewers, so they can quickly identify how697

they can comprehend it. According to our initial investigations,698

examples of refactoring intents, reported in Table IV, include699

enforcing best practices, removing legacy code, improving700

readability, optimizing for performance, code clean up, and701

splitting logic.702

Instruction. Our second research question shows how rarely703

developers report refactoring operations as part of their docu-704

mentation. Developers need to clearly report all the refactor-705

ing operations they have performed, in order to allow their706

reproducibility by the reviewers. Each instruction needs to707

state the type of the refactoring (move, extract, rename, etc.)708

along with the code element being refactored (i.e., package, 709

class, method, etc.), and the results of the refactoring (the 710

new location of a method, the newly extracted class, the new 711

name of an identifier, etc.). If developers have applied batch or 712

composite refactorings, they need to be broken down for the 713

reviewers. Also, in case of multiple refactorings applied, they 714

need to be reported in their execution chronological order. 715

Impact. We observe from Figures 4 and 6 that practitioners 716

care about understanding the impact of the applied refactoring. 717

Thus, the third dimension of the documentation is the need to 718

describe how developers ensure that they have correctly imple- 719

mented their refactoring and how they verified the achievement 720

of their intent. For instance, if this refactoring was part of a 721

bug fix, developers need to reference the patch. If developers 722

have added or updated the selected unit tests, they need to 723

attach them as part of review request. Also, it is critical to self- 724

assess the proposed changes using Quality Gate, to report all 725

the variations in the structural measurements and metrics (e.g., 726

coupling, complexity, cohesion, etc.), and provide necessary 727

explanation in case the proposed changes do not optimize the 728

quality deficit index. 729

Upon its acceptance for trial at Xerox, a set of developers 730

have adopted the Is procedure when submitting any refactoring 731

related code change. These developers were initially given 732

support for adopting it by us rewriting samples of their previ- 733

ous code review requests, using our template. We will closely 734

monitor its adoption, and perform any necessary tweaking. We 735

also plan on following up on whether this practice was able 736

to be beneficial for reviewers by (1) empirically validating 737

whether refactoring ReRs, using our template, take less time 738

to be reviewed, in comparison with other refactoring ReRs; 739

and (2) rescheduling another follow up interview with the 740

developers have been using it. 741

B. Recommendations for Research and Education 742

Program Comprehension. Refactoring for readability was 743

pointed out by the majority of participants. In contrast with 744

structural metrics, being automatically generated by the Qual- 745

ity Gate, reviewers are currently relying on their own in- 746

terpretation to assess the readability improvement, and such 747

evaluation can be subjective and time-consuming. There is 748

a need for a refactoring-aware code readability metrics that 749

specifically evaluate the code elements that were impacted 750

by the refactoring. Such metrics help in contextualizing the 751

measurement to fulfill the developer’s intention. 752

Teaching Documentation Best Practices. Prospective soft- 753

ware engineers are mainly taught how to model, develop and 754

maintain software. With the growth of software communities, 755

and their organizational and socio-technical issues, it is im- 756

portant to also teach the next generation of software engineers 757

the best practices of refactoring documentation. So far, these 758

skills can only be acquired by experience or training. 759

VI. THREATS TO VALIDITY 760

Construct & Internal Validity. Concerning the complete- 761

ness and correctness of our interpretation of open responses 762

within the survey, we did not extensively discuss all responses 763



because some of them are open to various interpretations,764

and we need further follow up surveys to clarify them.765

Concerning the selection criteria of the participants, we tar-766

geted participants whose code review description included the767

keyword “refactor*”. Since the validity of our study requires768

familiarity with the concept of refactoring, we assume that769

participants who used this keyword know the meaning and770

the value of refactoring. Another potential threat relates to771

the communication channel to identify the motivation driving772

code review involving refactoring. We examined threaded773

discussions and some situations may not have been easily774

observable. For example, determining whether the reviewer775

confusion was primarily caused by the refactoring and not776

by another phenomenon is not practically easy to assess777

through discussions. Interviewing developers would be a good778

direction to consider in the future to capture such motivations.779

External Validity. Concerning the representativeness of780

the results, we designed our study with the goal of better781

understanding developer perception of code review involving782

refactoring actions within a specific company. Further research783

in this regard is needed. As with every case study, the results784

may not generalize to other contexts and other companies. But785

extending this survey with the open-source communities is part786

of our future investigation to challenge our current findings.787

VII. CONCLUSION788

Understanding the practice of refactoring code review is789

of paramount importance to the research community and790

industry. In this work, we aim to understand the motivations,791

documentation, challenges, mechanisms and implications of792

refactoring-aware code review by carrying out an industrial793

case study of 24 software engineers at Xerox. In summary,794

we found that: (1) refactoring is completed for a wide variety795

of reasons, going beyond its traditional definition, such as796

reducing the software’s proneness to bugs, (2) refactoring-797

related patterns mainly demonstrate developer perception of798

refactoring, but practitioners sometimes provide information799

about refactoring operations performed in the source code, (3)800

participants considered avoiding the introduction of regression801

in system functionality as the main challenge during their re-802

view, (4) although participants do use different static checkers,803

testing is the main driver for developers to ensure correctness804

after the application of refactoring, and (5) readability and805

understandability improvement is the primary implications of806

refactoring on software evolution.807

Acknowledgement. We would like to thank the Software808

Development Manager Wendy Abbott for approving the survey809

and all Xerox developers who volunteered their time.810

REFERENCES811

[1] M. Fowler, K. Beck, J. Brant, W. Opdyke, and d. Roberts, Refactoring: Improving812

the Design of Existing Code. Boston, MA, USA: Addison-Wesley Longman813

Publishing Co., Inc., 1999.814

[2] W. Cunningham, “The wycash portfolio management system,” ACM SIGPLAN815

OOPS Messenger, vol. 4, no. 2, pp. 29–30, 1992.816

[3] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges of modern code817

review,” in International conference on software engineering, pp. 712–721, 2013.818

[4] C. Sadowski, E. Söderberg, L. Church, M. Sipko, and A. Bacchelli, “Modern819

code review: a case study at google,” in International Conference on Software820

Engineering: Software Engineering in Practice, pp. 181–190, 2018.821

[5] A. Bosu, J. C. Carver, C. Bird, J. Orbeck, and C. Chockley, “Process aspects 822

and social dynamics of contemporary code review: Insights from open source 823

development and industrial practice at microsoft,” IEEE Transactions on Software 824

Engineering, vol. 43, no. 1, pp. 56–75, 2016. 825

[6] N. Tsantalis, T. Chaikalis, and A. Chatzigeorgiou, “Jdeodorant: Identification and 826

removal of type-checking bad smells,” in 2008 12th European Conference on 827

Software Maintenance and Reengineering, pp. 329–331, IEEE, 2008. 828

[7] W. Mkaouer, M. Kessentini, A. Shaout, P. Koligheu, S. Bechikh, K. Deb, and 829

A. Ouni, “Many-objective software remodularization using nsga-iii,” ACM Transac- 830

tions on Software Engineering and Methodology (TOSEM), vol. 24, no. 3, pp. 1–45, 831

2015. 832

[8] A. Ouni, M. Kessentini, H. Sahraoui, K. Inoue, and K. Deb, “Multi-criteria code 833

refactoring using search-based software engineering: An industrial case study,” 834

ACM Transactions on Software Engineering and Methodology (TOSEM), vol. 25, 835

no. 3, p. 23, 2016. 836

[9] E. Murphy-Hill and A. P. Black, “Refactoring tools: Fitness for purpose,” IEEE 837

software, vol. 25, no. 5, pp. 38–44, 2008. 838

[10] R. Arcoverde, A. Garcia, and E. Figueiredo, “Understanding the longevity of code 839

smells: preliminary results of an explanatory survey,” in Proceedings of the 4th 840

Workshop on Refactoring Tools, pp. 33–36, ACM, 2011. 841

[11] A. Yamashita and L. Moonen, “Do developers care about code smells? an 842

exploratory survey,” in Working Conference on Reverse Engineering (WCRE), 843

pp. 242–251, 2013. 844

[12] M. Kim, T. Zimmermann, and N. Nagappan, “An empirical study of refactor- 845

ingchallenges and benefits at microsoft,” IEEE Transactions on Software Engin- 846

eering, vol. 40, no. 7, pp. 633–649, 2014. 847

[13] G. Szőke, C. Nagy, R. Ferenc, and T. Gyimóthy, “A case study of refactoring large- 848

scale industrial systems to efficiently improve source code quality,” in International 849

Conference on Computational Science and Its Applications, pp. 524–540, Springer, 850

2014. 851

[14] T. Sharma, G. Suryanarayana, and G. Samarthyam, “Challenges to and solutions 852

for refactoring adoption: An industrial perspective,” IEEE Software, vol. 32, no. 6, 853

pp. 44–51, 2015. 854

[15] C. D. Newman, M. W. Mkaouer, M. L. Collard, and J. I. Maletic, “A study on 855

developer perception of transformation languages for refactoring,” in International 856

Workshop on Refactoring, pp. 34–41, 2018. 857

[16] X. Ge, S. Sarkar, J. Witschey, and E. Murphy-Hill, “Refactoring-aware code 858

review,” in IEEE Symposium on Visual Languages and Human-Centric Computing 859

(VL/HCC), pp. 71–79, 2017. 860

[17] E. L. Alves, M. Song, T. Massoni, P. D. Machado, and M. Kim, “Refactoring 861

inspection support for manual refactoring edits,” IEEE Transactions on Software 862

Engineering, vol. 44, no. 4, pp. 365–383, 2017. 863

[18] L. MacLeod, M. Greiler, M.-A. Storey, C. Bird, and J. Czerwonka, “Code reviewing 864

in the trenches: Challenges and best practices,” IEEE Software, vol. 35, no. 4, 865

pp. 34–42, 2017. 866

[19] D. Silva, N. Tsantalis, and M. T. Valente, “Why we refactor? confessions of 867

github contributors,” in Proceedings of the 2016 24th ACM SIGSOFT International 868

Symposium on Foundations of Software Engineering, FSE 2016, (New York, NY, 869

USA), pp. 858–870, ACM, 2016. 870

[20] E. Murphy-Hill, C. Parnin, and A. P. Black, “How we refactor, and how we know 871

it,” IEEE Transactions on Software Engineering, vol. 38, pp. 5–18, Jan 2012. 872

[21] E. A. AlOmar, A. Peruma, M. W. Mkaouer, C. Newman, A. Ouni, and M. Kes- 873

sentini, “How we refactor and how we document it? on the use of supervised 874

machine learning algorithms to classify refactoring documentation,” Expert Systems 875

with Applications, p. 114176, 2020. 876

[22] E. A. AlOmar, M. W. Mkaouer, and A. Ouni, “Can refactoring be self-affirmed? 877

an exploratory study on how developers document their refactoring activities in 878

commit messages,” in 2019 IEEE/ACM 3rd International Workshop on Refactoring 879

(IWoR), pp. 51–58, IEEE, 2019. 880

[23] E. A. AlOmar, M. W. Mkaouer, A. Ouni, and M. Kessentini, “On the impact of 881

refactoring on the relationship between quality attributes and design metrics,” in 882

2019 ACM/IEEE International Symposium on Empirical Software Engineering and 883

Measurement (ESEM), pp. 1–11, IEEE, 2019. 884

[24] E. A. AlOmar, M. W. Mkaouer, and A. Ouni, “Toward the automatic classification 885

of self-affirmed refactoring,” Journal of Systems and Software, vol. 171, p. 110821, 886

2020. 887

[25] AlOmar., https://smilevo.github.io/self-affirmed-refactoring/, 2020 (last accessed 888

October 16, 2020). 889

[26] J. W. Creswell, “Research design: Quantitative, qualitative and mixed methods,” 890

2009. 891

[27] B. A. Kitchenham and S. L. Pfleeger, “Personal opinion surveys,” in Guide to 892

advanced empirical software engineering, pp. 63–92, Springer, 2008. 893

[28] E. Smith, R. Loftin, E. Murphy-Hill, C. Bird, and T. Zimmermann, “Improving 894

developer participation rates in surveys,” in 2013 6th International Workshop on 895

Cooperative and Human Aspects of Software Engineering (CHASE), pp. 89–92, 896

IEEE, 2013. 897

[29] G. Bavota, A. De Lucia, M. Di Penta, R. Oliveto, and F. Palomba, “An experimental 898

investigation on the innate relationship between quality and refactoring,” Journal 899

of Systems and Software, vol. 107, pp. 1–14, 2015. 900

[30] F. Palomba, G. Bavota, M. Di Penta, F. Fasano, R. Oliveto, and A. De Lucia, 901

“On the diffuseness and the impact on maintainability of code smells: a large scale 902

empirical investigation,” Empirical Software Engineering, vol. 23, no. 3, pp. 1188– 903

1221, 2018. 904


	Introduction
	Related Work
	Surveys & Case Studies on Refactoring
	Refactoring Awareness & Code Review

	Study Design
	Research Questions
	Research Context and Setting
	Pilot Study and Motivation
	Research Method

	Results & Discussions
	RQ1. What motivates developers to apply refactorings in the context of modern code review?
	RQ2. How do developers document their refactorings for code review?
	RQ3. What challenges do reviewers face when reviewing refactoring changes?
	RQ4. What mechanisms are used by developers and reviewers to ensure code correctness after refactoring?
	RQ5. How do developers and reviewers assess and perceive the impact of refactoring on the source code quality?

	Recommendations
	Recommendations for Practitioners
	Recommendations for Research and Education

	Threats to Validity
	Conclusion
	References

