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Abstract. Performance regression testing is highly expensive as it de-
lays system development when optimally conducted after each code change.
Therefore, it is important to prioritize the schedule of performance tests
by executing them only when a newly committed change is most likely to
introduce performance regression. This paper introduces a novel formula-
tion of the detection of performance regression introducing code changes
as an optimization problem. Static and dynamic metrics are combined
to generate a detection rule, which is being optimized in terms of its
ability to flag problematic code changes, and avoid false positives. We
evaluated our approach using performance issues, extracted from the Git
project. Results show the effectiveness of our approach in accurately de-
tecting performance regression introducing code changes compared with
state-of-the-art techniques. Moreover, our suggested detection rules were
found to be robust to the software changes over time, which reduces the
overhead of updating them frequently.

Keywords: Performance regression, multi-objective optimization, soft-
ware testing, software quality

1 Introduction

Performance is critical to software quality. Being one of the practices
of quality assurance, performance regression testing monitors the soft-
ware’s overall performance during its evolution to ensure least to negligi-
ble degradation of time. It mainly detects whether any committed changes
may have introduced performance regressions.

Ideally, in order to prevent any code change from negatively impacting
the software performance, performance tests, also known as benchmarks,
should be executed along with any committed change, as a sanity check.
However, in a real-world setting, performance tests are expensive, and
with the growth in the number of committed changes, software testers



are constantly challenged to find the right trade-off between optimally
performance testing newly introduced changes, and increasing the de-
velopment overall productivity [6]. Nevertheless, executing Performance
testing after each commit is an expensive and lengthy process. It repre-
sents an overhead on resources and it delays programmers from further
development until the results of testing have been gathered [7]. As a re-
sult, performance tests are not conducted after each change on the code
because they consume resources [6]. This practice challenges the early
finding the performance regression changes. For example, if performance
tests are postponed by the end of the Sprint, then developers need to
commit their code throughout the cycle and hope that no performance
test would fail by the end; otherwise, they have to rewind all previously
committed changes to debug them. In this context, various research has
been analyzing performance regression inducing code changes to allow
their early detection, and to support the prioritization of performance
regression i.e., for upcoming changes to commit, if any of them exhibits
characteristics that are similar to these known to have induced perfor-
mance regression, then this may be a trigger, for software testers, to
schedule their performance tests.

To cope with this expensive process, recent studies focus on mining
performance regression testing repositories to either support performance
analysis[5, 10, 1], or improve regression strategies [7, 8], or to characterize
code changes that have introduced regression [11, 2]. Characterizing such
problematic code changes is complex since it goes beyond the static design
of the code e.g., coupling and complexity, and it is reflected by the dy-
namic nature of the change e.g., excessive calls to external APIs, besides
being specific to the projects development practices, and programming
languages [12].

This paper defines detecting Performance Regression Introducing Code
Changes (PRICE) as an optimization problem. Initially, our approach
takes as input a set of commits that are known to be problematic, then
analyzes them using static and dynamic metrics, previously used in an
existing study [11]. Afterward, these commits, with their corresponding
metric values, are used as a training set for the Non dominated sorting
genetic algorithm (NSGA-II) [4], which evolves the given metrics to gen-
erate a detection rule that maximizes the detection of problematic code
changes. Our experiments were carried out using Git as the system un-
der test. Our findings show the ability of the evolutionary algorithm to
generate promising results, in comparison with state-of-art approaches.



2 Methodology

In this section, we give a high-level overview of our approach’s workflow,
then we explain how we designed NSGA-II for detecting performance
regression changes.

2.1 Approach Overview

Fig. 1: Approach Overview.

The goal of our approach is to find the best rule that detects PRICE.
The general structure is sketched in Figure 1.
Our approach is composed of three phases. Collection phase uses history
performance tests data collected from previous commits to calculate met-
rics. Metrics represent collected data of each commit to the respect of
the previous commit. Table 1 lists static and dynamic metrics used in
this work. Metrics 1,2,6 are static where the rest are both static and dy-
namic. The tool used to collect static metrics is Lizard code complexity
analyzer. Static data is afterward fed into dynamic analysis process to
run benchmarks and calculate dynamic metrics.

The second phase after collecting metrics is generating a detection
rule. Finding this rule is a multi-objective optimization problem. A De-
tection rule should have the highest detection of problematic commits



Table 1: Metrics Descriptions and Rationales.

# Description Rationale

1 Number of deleted functions Deleted functions indicate refactoring, which may
lead to performance changes

2 Number of new functions Added functions indicate new functionality, which
may lead to performance changes

3 Number of deleted Functions
reached by the benchmark

Deleting a function which was part of the bench-
mark execution could lead to a performance
change

4 The percent overhead of the top
most called function that was
changed

Altering a function that takes up a large portion
of the processing time of a benchmark has a high
risk of causing a performance regression because
it is such a large portion of the test

5 The percent overhead of the top
most called function that was
changed by more than 10% of its
static instruction length

Similar to metric 4, however this takes into ac-
count that the change affects a reasonable por-
tion of the function in question. Bigger changes
may mean higher risk.

6 The highest percent static function
length change

Large changes to functions are more likely to cause
regressions than small ones

7 The highest percent static function
length change that is called by the
benchmark

The same as for metric 7, but here we guaran-
tee that the functions are actually called by the
benchmark in question.

while minimizing the detection of benign commits. The search space con-
tains solutions with different combination of metrics and a value for each
metric. In this paper, we considered seven metrics from a previous study
[11], with which we will also compare our approach. Once a detection rule
is generated, developers can apply it on each commit to detect regression
and decide whether to run benchmark testing or not. In case benchmark
testing is applied on a commit, dynamic metrics of that commit is stored
on the database to help in updating detection rule in the future when
rule is no longer providing good predictions.

2.2 Data Collection

We have selected the Git project to be the system under test of our study.
We have chosen Git as it is open-source, with a built-in set of benchmarks,
easy to compile and run (mandatory for our dynamic analysis), besides
our familiarity with its commands. We collected data for 8798 commits
originally. Those commits were chosen by executing the ‘git rev-parse‘
command from the master branch at the time and going back to the first
commit we could find which had performance tests. Across that range



of commits, there were 202 commits which, for technical reasons, were
untestable, so we removed them. Thus in total we considered 8596 com-
mits.

Afterward, for each commit, we run all performance tests, and this is
for two reasons: the first one, we need to see whether any test would fail,
and if so, we tag the commit under test as problematic.The second reason
is to dynamically profile each code change and calculate some of metrics
at runtime. To avoid the flakiness of some tests and the stochastic nature
of the code, we test each commit 5 times. Running all of the performance
tests for a single commit takes a significant amount of time (hence the
need for this study), so we parallelized the task across many machines.
The results of the Git performance tests are reported in wall time, which
can be impacted by using machines with different clock speeds, RAM, etc.,
so to mitigate this we used identical Virtual machines in a proprietary
cloud1. The dynamic information was collected using Linux perf [3], as for
the static information, the list of functions and their location in the source
code, was collected by using the python lizard 2 tool. While intended
for calculating cyclomatic complexity, it also provides list of functions
identified in all of the source files in the repository for that commit. We
provide the dataset and tools we used for reproducibility and extension
purposes3.

2.3 Solution Representation

Our solution is encoded as a tree-based rule. The leaf nodes are termed
’terminals’ and internal nodes as ’primitives’. Primitives are logical oper-
ators that compares metric value with the threshold assigned to it respec-
tively. Figure 2 illustrates a solution tree that combines five metrics and
their threshold values by logical operators AND and OR. Solution tree is
strictly typed to assure structure is not broken during the evolution.

2.4 Solution Evaluation

Generated rules are evaluated by two objectives, which are hit and dismiss
rates. This subsection defines these objectives and shows how they are
conflicted.

1 https://www.digitalocean.com
2 http://terryyin.github.io/lizard/
3 https://smilevo.github.io/price/



Fig. 2: Solution representation as a tree-based rule.

Hit rate as an objective. The Hit rate indicates the number of cor-
rectly detected commits to total number of commits encountering regres-
sion. In formula 1 Hp is predicted problematic commits while H is actual
regression commits. Values of hit rate are between 0.0 and 1.0. Hit rate of
1 means that all commits encounter regression are detected. Hit rate can
also be 1 if all commits considered to be problematic which is not proper
to this type of problems.

|Hp ∩H|/|H| (1)

Dismiss rate as an objective. The Dismiss rate is the number of
commits classified not to be introducing regression to the total actual
number of stable, not problematic, commits. In formula 2 Dp is predicted
stable commits while D is actual stable commits. Dismiss rate values
are between 0.0 and 1.0. Dismiss rate of value 1 indicates that all non-
problematic commits are correctly classified as not introducing regression.
Dismiss rate of 1 might indicate that all commits are not problematic. It
cannot be used individually as hit rate.

|Dp ∩D|/|D| (2)

An optimal solution would score a hit and dismiss rate of 1. Since
hit and dismiss rates are conflicting, when optimizing one objective, we
automatically degrade the other as shown in Figure 3. Hence, we are
searching for near optimal solutions that should deliver a good trade-off
between these objectives that are meant to be maximized.

2.5 Solution Variation

For the crossover operator, we deploy the Simulated Binary Crossover
(SBX). Simulated Binary Crossover simulates single point crossover with
using probability density function. Crossover point is chosen randomly



between 1 and the length of the chromosome. In chromosome represented
as tree, rule in our case, crossover is swapping tree sub-branches. New
trees will not necessarily be the same size as their parents. It depends on
crossover point position. If crossover point located close to terminal nodes
, one off spring might be a single metric where the other is an extended
tree that might have duplicated metrics with different threshold values.
As for the mutation operator, we use the Polynomial Mutation. This op-
erator uses polynomial probability distribution to select the node to be
mutated. Mutation operator depends on node type to insure producing
a logical rule. For example, primitive nodes, which are connecting termi-
nal nodes, should always be a comparison operator, which can be either
greater than or less than.

Fig. 3: Hit and dismiss are conflicted objectives.

Choice of the final solution. The multi-objective nature of the
algorithm allows the choice of multiple Pareto-equivalent solutions that
tend to optimize one objective in comparison with the others. So, software
testers can choose either to prioritize the hit rate over the dismiss rate if
the cost of running benchmarks is high or the allowed testing time period
is relatively short; or they can favor the dismiss rate if they are afraid
of missing any code change introducing a performance regression, at the
expense of running extra test cases. For our experiments, we have chosen
the solution with the highest F-Measure across various runs.

3 Experimental Setting

3.1 Research Questions

RQ1. To what extent does NSGA-II provide better regression
detection compared with other techniques?



To address this research question, we applied the 10-fold cross vali-
dation. We initially sort the commits chronologically, then we split them
into 10 equal folds where fold 1 contains the earliest (oldest) commits
subset, all the way to fold 10, which contains the latest commits subset.
The validation is performed using 10 iterations. In each iteration, one fold
is used for testing and the rest is used for training. Note that Folds do
not necessarily contain same number of problematic commits, but since
the majority of folds are used for training, the training set tends to con-
tain significantly more problematic commits, than the testing set, which
does simulate real world scenarios. Results are compared with k-Nearest
Neighbors algorithm (KNN) and a state-of-the-art approach called Per-
phecy [11]. We choose KNN to see the results of considering the problem
of performance regression as a non-parametric binary classification, where
metrics represent the feature space. We also compare with Perphecy since
it is available online and known to provide good results. Hit and dismiss
rates and F-measure to compare the performance of the three methods.

RQ2. Do the generated rules continue to perform well with
the evolution of the software?

This research question challenges the stability of generated rules over
the evolution of the software. As software evolves, with committing a
significant amount of code changes, the software may undergo several
structural and functional changes, which may change the characteristics
that have been previously captured by the metrics, and so it may con-
sequently hinder the accuracy of the performance detection. To simulate
such scenario, similarly to RQ1, we sort again the commits chronologi-
cally, then we split them into 10 equal folds, where the first fold contains
the oldest commits, all the way to the last fold which contains the newest
commits. Optimally, we aim in splitting the commits that are co-located
in time into a separate fold. By generating the rule only using the oldest
fold, and then testing it on the remaining folds, we intend to see whether
our rule may get obsolete over time i.e., the further is the fold, the harder
should be the rule to detect performance issues.

3.2 Parameter Tuning

For NSGA-II, Different values have been used for the population size and
the maximum number of evaluations, generating a variety of configura-
tions. We use the trial and error and choose the configuration providing
better results in terms of hit rate and dismiss rate. We used the follow-
ing parameters: Population size=50, iterations=10000, Selection=Binary



tournament selection without replacement, Simulated Binary Crossover
probability=0.8, Polynomial Mutation probability=0.5.

Perphecy combines metrics to find the best rule that better detect
performance issues in a deterministic way. Before trying all possible met-
rics combinations to find the best rule, Perphecy determines each metric
threshold value individually. The combination with highest hit and dis-
miss rate is selected. The authors of Perphecy applied this process for
each project separately, as every project has its own characteristics and
so the nominated rule differs from project to another. In this context, we
did not reuse any existing rules from the previous study and we had to
generate a rule for each subset of commits, from Git project.

For KNN, we use the gap statistic method to estimate the optimal
number of clusters K. Gap statistic is chosen since it provides a statistical
procedure to model traditional elbow and silhouette methods. To ensure
fairness when compared to NSGA-II and Perphecy, we re-estimate K for
each set of input commits.

Since our experiments contain a fold cross validation, we tune the
algorithms together once, for the first fold. To ensure fairness, we regen-
erate a rule representing each algorithm for every training fold, as we will
detail later.

4 Results

4.1 RQ1. To what extent does NSGA-II provide better
regression detection compared with other techniques?

Fig. 5: Hit Rate, and Dismiss Rate of KNN, Perphecy and NSGA-II, on 10-folds.

In order to compare performance of NSGA-II with KNN and Per-
phecy, we plotted hit rate, dismiss rate and F-measure of each technique.



In this cross-validation, each fold has been tested with a rule, which was
created using the remaining folds as the training set. In Figure 5, the hit
rate represents correctly classified commits while the dismiss rate repre-
sents correctly avoided commits. According to Figure 5 results, KNN’s
hit rate is very low, and only reached 10% at most, so it highly miss-
classifies commits with regression in contrast with a more successful dis-
miss rate where more than 95% of benign commits have been correctly
classified. This is due to the imbalance between the two class represen-
tations: commits encounter regression are only about 4% of the overall
commits. Although, this imbalanced setting represents a challenge for ma-
chine learning algorithms, it mimics naturally the real setting for typical
software projects, where performance regression tends to be less frequent
but critical to software health [7].

Perphecy also combines metrics to find the best rule that better detect
performance issues in a deterministic way. Before trying all possible met-
rics combinations to find the best rule, Perphecy determines each metric
threshold value individually. The combination with highest hit and dis-
miss rate is selected. The authors of Perphecy applied this process for
each project separately, as every project has its own characteristics and
so the nominated rule differs from project to another. In this context we
applied Perphecy approach in Git project to compare it with our results.

Fig. 6: F-measure of KNN, Perphecy and NSGA-II, on 10-folds.

This approach has provided significantly better results than KNN
since its hit rate, across folds, varies between 39%, and 72%, as for the
dismiss rate, it ranges between 42% and 58%. Perphecy is independent of
the naive aggregation of all values, and so it clearly outperforms KNN,



since its F-Measure goes up to 68% while KNN achieved an F-Measure
of 17% at best.

NSGA-II’s performance was competitive to Perphecy, since its hit
rate is between 35%, and 69%, which is slightly below Perphecy’s hit
rate, and for the dismiss rate, it ranges between 48% and 79%, which was
slightly above Perphecy’s dismiss rate. As for the F-Measure, as shown
in Figure 6, NSGA-II ’s values are between 47%, and 68%, and it also
outperforms Perphecy, in all folds, expect for the second one. The main
difference between NSGA-II and Perphecy is the ability of the latter to
change the threshold values while composing the decision tree, besides the
global exploration of NSGA-II for many possible competing rules during
its evolutionary process.

Fig. 7: An example of performance regression introducing code change.

Fig. 8: Subset of a solution extracted from the Pareto front.

To show a concrete example of one4 of the problematic commits, Fig-
ure 7 shows its contrast with previous commits. As shown in Figure 7, the

4 https://bit.ly/2I4khC3d491cf



deleted lines of code (in red) is the conventional operation of assigning a
value to a particular index of an array which is a fast way of adding val-
ues in an array. This operation was replaced, as shown in the added lines
(in green), by adding the values through a function call and passing the
value to be added as an argument. If scheduling regression tests was using
a straightforward heuristic like Lines Of Code (LOC), the above-shown
code will not trigger any flags as there is no addition of new lines of code.
Whereas, the newly introduced statements are expensive, since for each
function call, it will traverse a data structure and append the new value.
This issue was captured by a rule depicted in Figure 8 (for visibility we
show a subset of the tree).

4.2 RQ2. Do the generated rules continue to perform well
with the evolution of the software?

To evaluate generated rules stability with the evolution of the software,
we used the earliest commits subset for training and the rest nine subsets
for testing. Figure 9 contains the boxplot of F-Measure values of the
Pareto front solutions during 31 simulation runs. As shown in figure 9,
no significant difference on median and the 75th percentile presented on
f-measure values. This indicates that generated rules were able to offer
regression prediction up to the forth fold as good as the second fold. For
the remaining folds, we can observe a slight decrease from the seventh
until the tenth fold. Characteristics of code changes introducing regression
may change with the evolution of the code. This explains the regression
in the prediction. Although our rules have shown their ability to maintain
a good performance across various code changes, it is recommended to
update the prediction regularly.

5 Threats to Validity

Internal Validity. We report on the uncontrolled factors that interfere
with causes and effects, and may impact the experimental results. Com-
mits are not necessarily sequential: The git project itself uses git as source
control, and employs a branching strategy with merges. If the project his-
tory branched and then merged, when you view the history linearly you
might have two commits next to each other which technically were not
developed sequentially when originally committed by the developer. How-
ever, since our approach is not dependent to the program’s logic, it is a
problem to compare out of order commits as long as we can detect any
performance regression.



Fig. 9: Boxplots of Pareto front solutions’ F-Measure values, trained on fold 1, over 31
runs.

Construct Validity. Herewith we report on certain challenges that
validate whether the findings of our study reflect real-world conditions. In
order to execute the performance tests for over 8000 commits in a timely
manner, the task was parallelized across multiple machines. This could
become a threat because the results for the performance tests are given
as a time duration, which can vary based on CPU speed, number of cores,
and other random variables between machines. To mitigate this, identical
virtual machines were used for all performance test results, which means
CPU speed, RAM, and so on were identical. Additionally, we ran each test
5 separate times, such that each execution was at a different time of day
on a different virtual machine. This helps mitigate other uncontrollable
random noise in the results of the testing.

External Validity. The prediction of performance regression was
limited only to one project. The generated predictor does not necessarily
give the best results for other projects. We plan on the future to apply
our approach to more projects and, if possible, across more programming
languages.

6 Related Work

Chen et al. [2] found that performance regression introducing changes is
rigorous and associated with complex syndrome. As a result, the study
suggests to frequently conduct performance testing rather than defer it
until the end of development process. Although executing comprehensive



performance testing will ease locating code change introducing perfor-
mance regression, it is expensive and might delay development process.
Many researches have been conducted to overcome this limitation. Huang
et al. [7] argue that performance testing should be devoted to only com-
mits counter performance regression rather than all commits. To achieve
that they rank commits based on the probability of encountering perfor-
mance regression based on a static Performance Risk Analysis (PRA).
This analysis focuses on how the change is expensive and frequent. After
ranking commits, based on the analysis, a comprehensive testing is con-
ducted on risky commits while light testing conducted on the rest. PRA
is considered a light approach because it statically estimates the risk of a
code change without running the software. Perphecy [11] agrees with PRA
[7] that applying comprehensive performance testing on each commit is
expensive. Rather than finding the problematic commit and intensively
perform regression testing on it, Perphecy insists on testing each commit
but with only test suites that would detect performance regression. To
determine which test suite can detect performance regression, they have
implemented a predictor based on a combination of indicators built up
from static and dynamic data collected from previous commits compared
with static data of the new commit.

7 Conclusion and Future Work

We presented a novel formulation of the early detection of performance
regression as multi-objective optimization problem. We used NSGA-II to
generate a detection rule, while maximizing the correctness of hitting a
regression and maximizing the correctness of dismissing a non-regression,
as two objectives. We evaluated our detection rule by building a dataset
of performance regression, extracted from the Git project. As we compare
our results to other techniques, we found that our approach provides a
competitive detection that improves the state-of-the-art existing results.
We plan to extend this study by adding additional metrics, including
branch and bound, Cyclomatic complexity, and coupling between objects,
and explore more optimization algorithms, known to perform well for
similar software engineering problems [9]. We plan on also analyzing more
projects to challenge the generalizability of our approach.
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