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Abstract—Modern code review (MCR) is now broadly adopted
as an established and effective software quality assurance prac-
tice, with an increasing number of open-source as well as
commercial software projects identifying code review as a crucial
practice. During the MCR process, developers review, provide
constructive feedback, and/or critique each others’ patches before
a code change is merged into the codebase. Nevertheless, code
review is basically a human task that involves technical, personal
and social aspects. Existing literature hint the existence of poor
reviewing practices i.e., anti-patterns, that may contribute to a
tense reviewing culture, degradation of software quality, slow
down integration, and may affect the overall sustainability of
the project. To better understand these practices, we present
in this paper the concept of Modern Code Review Anti-patterns
(MCRA) and take a first step to define a catalog that enumerates
common poor code review practices. In detail we explore and
characterize MCRA symptoms, causes, and impacts. We also
conduct a series of preliminary experiments to investigate the
prevalence and co-occurrences of such anti-patterns on a random
sample of 100 code reviews from various OpenStack projects.

Index Terms—Modern code review, review anti-pattern

I. INTRODUCTION

Modern Code Review (MCR) is an established and broadly

adopted software engineering practice in both commercial and

open-source software (OSS) projects [1], [2]. Code review is

defined as the process of reviewing other developers code

to ensure software quality, and find potential problems in

their code changes before they are merged with the codebase.

MCR derives from the formal and disciplined process of

software inspection, which requires synchronous face-to-face

meetings among developers to make a checklist-based code

inspection and interactive discussion [3]. Conversely, MCR

provides practitioners with a convenient environment to read

and discuss code changes and makes this activity lightweight,

less formal and asynchronous through a tool specialized sup-

port for geographically distributed code review [1], [4]. There

is an increasing number of available MCR platforms including

Gerrit, ReviewBoard, and Phabricator.

The MCR process is most effective when developers follow

best practices, such as efficient, collaborative and timely re-

view discussions and code updates to improve the code quality,

enhance knowledge transfer, increase team awareness and

share code ownership. Such practices help reducing conflicts

in the team while ensuring that the code meets common quality

standards before it is merged into the code base [5]. In practice,

it is often challenging to follow these standards due to the

nature of code review being basically a human task involving

technical, personal and social aspects [1], [5]–[11]. Hence,

some poor code review practices can be observed and manifest

in the form of anti-patterns, i.e., common but ineffective

practices to a recurring problem that should be avoided. In

recent years, researchers and practitioners attempted to defined

catalogs of MCR anti-patterns, which become a major problem

that hinders software quality, maintainability and sustainabil-

ity, if not properly addressed [12]–[14].

In practice, such code review anti-patterns can manifest

in different forms such as divergent reviews, low reviewer

participation and responsiveness, toxic conversations, etc. [7],

[11], [15], [16]. For example, since reviewer opinions may

differ, patches can receive both positive and negative scores

leading to conflicts in the peer review process, due to the

disagreement about whether a developer’s contribution should

be accepted. Hence, if reviews with divergent scores are not

carefully resolved, they may contribute to a tense reviewing

culture and may slow down integration and lead to detrimental

effects on contributors’ continuing participation in the commu-

nity affecting the sustainability of the project [11], [16].

In this paper, we further study this phenomenon to overcome

these problems. With the aim of providing practitioners with

a code review quality-oriented dashboard, we compiled a

catalog for MCR anti-patterns. It contains 5 common anti-

patterns related to different aspects of the MCR management

and process, explaining their symptoms, causes and potential

impacts on the development team and project. To gain more

understanding, we further conducted a set of preliminary

experiments to investigate the prevalence and occurences of

such anti-patterns on a random set of 100 code reviews from

various OpenStack projects that use Gerrit as a MCR platform.

Overall, our results indicate that MCR anti-patterns are indeed

prevalent in the studied projects. Practitioners should be aware

of these anti-patterns and consider detecting and preventing

them using dedicated techniques.

II. RELATED WORK

Factors that impact the effectiveness of the MCR pro-
cess. Various studies focused on the MCR process in both
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open-source and industry. Bosu et al. [17] studied code review

in Microsoft by investigating various factors that make code

reviews useful to developers based on review comments. Jiang

et al. [18] studied the factors that impact the decision on

the acceptance of Linux patches. They conclude that patches

written by experienced developers are easily accepted and that

the number of invited reviewers have an impact of review

time. Ram et al. [19] suggest that the change description,

size, and coherency with the project coding style impacts the

likelihood of the code change being reviewed. Baysal et al.

[20] showed that various technical and non technical factors

affect the review process including the complexity of the patch,

the patch writer experience and the reviewer previous history

and workload. Recently, Hirao et al. [16] studied patches with

divergent review scores and found that 15%–37% of patches

that receive multiple review scores suffer from divergent

scores. Furthermore, [8] showed that a low level of agreement

is more likely to take a longer reviewing time and discussion

length. Thongtanunam et al. [21] investigated patches that do

not attract reviewers, not discussed, and receive slow initial

feedback. They found that the length of the patch description

plays an important role in the likelihood of receiving poor

reviewer participation or discussion.

Socio-technical aspects in MCR. Huang et al. [11] studied

issues related to potential conflicts in code review. They

indicate that conflicts generally have detrimental effects on

contributors’ continuing participation in the community, while

constructive suggestions increase retaining the contributors.

Bosu et al. [22] showed that core developers receive quicker

first feedback on their review request, complete the review

process in shorter time, and are more likely to have their

code changes accepted into the code base. Later, Bosu et al.

[23] studied the impact of interpersonal relations on the patch

review in MCR. They found that the patch author is one of the

important factors for peer reviewers to decide to review a patch

or not. In addition, Steinmacher et al. [24] gave evidence of

the existence of several social barriers faced by newcomers in

the code review process. Baysal et al. [25] studied the patch

life cycle in code review process in Firefox and found that

patches submitted by casual contributors are disproportionately

more likely to be abandoned compared to core contributors.

Later, Mcintosh et al. [26] suggested that coverage, reviewers

participation and expertise play high impacts on the code

quality. Recently, Uchoa et al. [27] found that long discussions

and review disagreements increase design degradation. Ebert

et al. [6] found that missing rationale and lack of familiarity

with the code are the major reasons for confusions in code

review. Raman et al. [15] studied toxic conversations and

unhealthy interactions in open source projects indicating their

potential impacts to demotivate and burn out developers,

creating challenges for sustaining open source.

III. MCRA: A CATALOG OF MCR ANTI-PATTERNS

Despite bringing several benefits, MCR can be problematic

and challenging especially when it does not follow good

practices [5], [28]. A catalog of MCR anti-patterns is of crucial

importance to increase the practitioners awareness towards

such practices. In particular, we identify a list of common

anti-patterns based on the existent literature, and provide an

illustrative example.

A. Description of MCR Anti-patterns

1) Confused reviewers (CR): Confusion in code review

refers to the inability or the uncertainty of the reviewers to

understand the reason(s) for the code change or any related

aspects to the patch [6]. There are several reasons behind

confusion in code review such as missing rationale, lack of

experience with the source code, and complex patches [10].

2) Divergent reviewers (DR): A code patch under review

can suffer from divergent reviewers when reviewers cannot

agree on the final evaluation by providing conflicting reviews

and scores [16]. DR can lead to several problems in the

review process including developer abandonment [11], poor

team performance [29] and slow integration processes [8].

3) Low review participation (LRP): This anti-pattern is

defined as the low involvement of reviewers when reviewing a

given code patch. Patches with low number of reviewers can

be more defect-prone [7]. Rigby et al. [30] showed that the

level of review participation is the most influential factor in

the code review efficiency.

4) Shallow review (SR): The SR anti-pattern happens when

the review comments are not relevant for the patch author

and/or focus on insignificant details namely, code nitpicking,

variables name, spaces, etc, instead of addressing quality

issues in the patch [5].

5) Toxic review (TR): Developers and reviewers can have

high stress levels due to several socio-technical factors [].

Toxic conversations and unhealthy interactions may demoti-

vate and burn out developers and reviewers, creating chal-

lenges for sustaining open source.

To get more details about the salient aspects of each anti-

pattern type, Table I describes the symptoms and potential

impacts/consequences on the software product, the review

process, and the team.

B. Illustrative examples

To show the salient aspects of MCR anti-patterns, Figure

1 depicts an example of a code review1 taken from the

Opendev project, using the Gerrit code review platform.

Several anti-patterns can be found in this example including

confusion in reviewers comments. For example, we can see

that the reviewer “Sean McGinnis” is not clear about the

rationale of the patch through his comment “Do you have
a link to somewhere that says this is deprecated? I tried to
find one, but I don’t see anything stating they are deprecating
this. Nothing in the source either[...]” (cf. discussion box B

in Figure 1). Moreover, this code review suffers from low

review participation since the patch was updated on May

11, 2018 and the first reviewers comment was on May 29,

2018. Furthermore, we observe from the review scores and

1https://review.opendev.org/#/c/567926/
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TABLE I: MCR anti-patterns and their associated symptoms and consequences.

MCR anti-pattern Symptoms Potential Consequences
Confused reviews
(CR)

• Reviewers ask question(s) about the rationale or the
solution approach of the patch.

• Reviewers express incertitude in review comments.

• Process: Confusion decreases the efficiency and the effectiveness of
the review [6], [10].

• Artifact: The patch may still have poor quality after the review as
reviewers may not fully understand the patch [6].

• People: Reviewers may feel frustrated and may express negative
sentiments due to the confusion [6].

Divergent reviews
(DR)

• The review decisions do not reach consensus.
• The review scores are diverged.
• Reviewers post conflict review comments to each

others.

• Process: The divergence can slow down the integration process [16]
• Artifact: It is correlated with negative development outcomes (i.e.,

patches without changing) [16]
• People: The divergence increases contributors’ likelihood of leaving

the communities and lead to the poor team performance [11], [29]

Low review partici-
pation (LRP)

• The patch does not have other developers as a re-
viewer.

• The patch receive few/short comments.
• The patch does not receive prompt/timely feedback

from reviewers.

• Process: The lack of review participation has a negative impact on
review efficiency and effectiveness [30].

• Artifact: Patches with low number of reviewers can be more defect-
prone [7]

• People: The inefficient reviewer feedback could make the patch author
forget the change. [5]

Shallow review
(SR)

• The patch receive a superficial or shallow comments
despite the complexity or size of the patch.

• The review comments mainly focus on the visual
representation (e.g., code styling) or minor issue(s).

• The review comments are unclear or a concern was
raised with a clear explanation.

• The absence of inline comments despite the complex-
ity of the patch.

• Process: Focusing on small and irrelevant issues would waste time for
no benefit [5].

• Artifact: Unknown. There is potential gap in literature on its impact.
• People: Small problems (i.e., a lot of style comments) would make

the author annoyed [5].

Toxic review (TR) • The patch has a controversial discussion that does not
relate/focus to criticizing the code.

• The patch receives a comment with a negative senti-
ment (e.g., harsh, rage expressions).

• Process: The reviews with negative sentiments took longer time to get
accepted [31].

• Artifact: Harmful sentiments could erode the benefits of suggested
changes [31].

• People: Sentiments influence the quality of relationship between two
persons [32].

discussions that there are divergent review scores (cf. box A

in Figure 1), in which the reviewer Jay Bryant provided +2
score (i.e., accept), whereas the reviewer Sean McGinnis
provided -1 score (i.e., reject). Clearly, all these problems

resulted into heated discussions between reviewers and the

patch author and resulted in abandoning the patch as shown

in the last comment of the author Eric Harney saying :

“Sure. I mean, it’s not. But ... yeah, let’s go with the ”it doesn’t
matter” plan.”. Hence, from the example we can observe the

importance to identifying such anti-patterns and prevent them

as early as possible during the code review process.

IV. PRELIMINARY EXPERIMENTS

While our long-term agenda is much broader, we conducted

a preliminary study to investigate the phenomenon of anti-

patterns in MCR. We first conducted a manual inspection

to detect the existence of anti-patterns in a sample of code

reviews. Thereafter, we design our experiments to address two

main research questions on the frequency of each anti-pattern

type (RQ1), and the prevalence of such anti-patterns in practice

(RQ2) to gain more insights on this phenomenon.

A. RQ1: How frequent are MCR anti-patterns?

Context selection. To investigate the frequency of each

MCR anti-pattern in practice, we considered the OpenStack

project that adopts a review process based on the Gerrit review

system. OpenStack is a large open source software ecosys-

tem (i.e., OpenStack attracts more than 100,000 contributors

spread more than 600 repositories [33]), where many well-

known organizations and companies collaboratively develop a

platform for cloud computing. From the latest available online

OpenStack datasets [34], [35], we randomly selected a sample

of 100 code reviews to be manually inspected to identify the

possible existence of anti-patterns. The random sample covers

across all repositories and covered reviews from November

2011 to July 2019. This dataset has been used in several

similar studies, especially for those that have motivated our

anti-patterns [6], [10], [16], [34]–[36]. We also provide our

replication package2 for future replications and extensions of

our study.

Analysis Method. To detect anti-patterns in the studied

sample, each code review has been manually inspected by

three authors individually. The manual inspection of each code

review consists of reading through (1) the author/reviewers

discussion threads, and (2) the source code change diff in

Gerrit, in order to identify potential symptoms of MCR anti-

patterns. In a preliminary iteration, the authors conducted

an open discussion using a sample of 10 code reviews to

discuss whether the defined anti-patterns match with the

definition and symptoms. Thereafter, considering the workload

required for the manual inspection (100 code reviews × 5 anti-

pattern types, i.e., 500 inspections), we divided the authors

into two three-person groups, so that each group perform

250 inspections. Each inspection took on average from 5

to 25 minutes, depending on (1) the length of the review

2https://github.com/moatazchouchen/MCRA
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All Projects Documentation

Abandoned

Use urllib3 instead of requests.packages.urllib3 

The packaged version of urllib3 in requests is 
deprecated, just use urllib3 instead. 

Change-Id: I853bd53c1a4ecfdc053a2d7086efa11feebb628c 

Comments SizeFile Path

+14, -12

Files Open All  Base

History

Search

Project

Branch
Topic
Updated

Commit

May 11, 2018 10:50 AMAuthor Eric Harney <eharney@redhat.com>
Committer Eric Harney <eharney@redhat.com> May 11, 2018 2:24 PM

(gitweb)
(gitweb)Parent(s)

Change-Id

292bc3dccb3f034acbaf29af0cae289549668772
7c1486218c8de56f1b3f556d5456a7cb8379c777
I853bd53c1a4ecfdc053a2d7086efa11feebb628c

Eric Harney ↩
Eric Harney ↩
Zuul ↩
Eric Harney ↩
Sean McGinnis ↩
Jay Bryant ↩
Sean McGinnis ↩
Eric Harney

The "deprecated" note was perhaps me extrapolating too much from
    https://github.com/requests/requests/blob/master/requests/packages.py

↩
Sean McGinnis ↩
Eric Harney ↩
Sean McGinnis ↩
Eric Harney ↩

Owner
Reviewers

Collapse All

Fig. 1: Example of MCR anti-patterns from the OpenStack project, code change ID #567926 1.

TABLE II: The detection results of MCR anti-patterns.

Anti-pattern # instances Kappa Agreement

Confused Reviews (CR) 21 0.93 Perfect

Divergent Reviews (DR) 20 1.0 Perfect

Low Review Participation (LRP) 32 1.0 Perfect

Shallow Review (SR) 14 0.81 Substantial

Toxic Review (TR) 5 0.65 Substantial

discussions and (2) the size of the code change. To validate the

consistency between the participants inspection, we measured

the inter-rater agreement using Fleiss’s Kappa coefficient κ
[37]. Fleiss’s Kappa coefficient κ is interpreted as: Poor
agreement if κ < 0; Slight agreement, if 0.01 ≤ κ ≤ 0.2;

Fair agreement, if 0.21 ≤ κ ≤ 0.40; Moderate agreement, if

0.41 ≤ κ ≤ 0.60, Substantial agreement, if 0.61 ≤ κ ≤ 0.80,

and Almost perfect agreement, if 0.81 ≤ κ ≤ 1.00. Based on

the encouraging Kappa scores (i.e., near perfect for CR, DR,

LRP, and substantial for SR, TR), two three-person groups

coded the remaining samples.

Results. Table II shows the frequencies of anti-patterns

and the obtained Fleiss’s Kappa coefficient. the low review

participation (LRP) anti-pattern is the most frequent affecting

32% of analyzed code reviews. The divergent review (DR)

and confused review (CR) anti-patterns manifest in 20% and

21% of the studied code reviews, respectively. The shallow

review (SR) is detected in 14% of the examples, and finally

the toxic review (TR) turns out to be the lowest frequent one

with 5%. Moreover, we achieved perfect agreement for 3 out

the five anti-patterns, CR, DR and LRP, with 0.93, 1, and 1,

respectively. We also achieved a substantial agreement for the

TABLE III: The prevalence of MCR anti-patterns.

Category Count

Code reviews affected by one anti-pattern 67

Code reviews affected by two anti-patterns 21

Code reviews affected by three anti-patterns 4

two remaining anti-patterns, SR and TR, with a Kappa score

of 0.81 and 0.65, respectively. Having a lower agreement level

in SR and TR could be explained by the need for a degree

of subjectivity to detect them. Therefore, it is challenging to

manually detect code review anti-patterns which motivates the

need of automated support tools and deeper understanding of

the main roots behind these anti-patterns.

B. RQ2: How prevalent are MCR anti-patterns?

To gain more insights from the detected anti-pattern in-

stances, we further analyze their prevalence in the dataset.

Analysis Method. Our analysis consists of counting the

number of anti-patterns that exist in each studied code review

in RQ1 regardless of the specific anti-pattern types.

Results. The obtained results are summarized in Table III.

We observe that 67% of the studied code reviews contain at

least one instance MCR anti-pattern. Moreover, we can see

that 21% of the studied code reviews have at least two anti-

pattern instances, and found that 4% contain three or more

anti-patterns. These results indicate that MCR anti-patterns are

indeed highly prevalent, thus practitioners should be aware

of them and consider detecting and preventing them using

dedicated techniques.
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V. CONCLUSION AND FUTURE WORK

In this paper, we identified a list of five common MCR

anti-patterns, their symptoms and potential impacts on the

quality of the software product, the process and the team. To

showcase the prevalence of these anti-patterns, we conducted a

study on a random sample of 100 code reviews extracted from

Openstack project. Preliminary results show that these anti-

patterns are indeed prevalent in MCR affecting 67% of code

reviews. While we do not claim that the provided catalogue is

exhaustive, further investigations should be conducted.
As part of our future work, we plan to study the phe-

nomenon of MCR anti-patterns in more depth by surveying

developers in order to provide an exhaustive list of MCR anti-

patterns. Moreover, we plan to design automated techniques to

detect these anti-patterns. We also plan to study the sensitivity

of MCR anti-patterns detection in different scenarios mainly

within-project detection and cross-project detection. Finally,

we plan to design and integrate dedicated bots in MCR tools

that help developers to avoid such anti-patterns.
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