
On the Classification of Software Change Messages using
Multi-label Active Learning

Sirine Gharbi
LARODEC - Institut Supérieur de Gestion de Tunis
41, Avenue de la liberté, 2000, Le Bardo, Tunisia

gharbi.cyrine@outlook.com

Mohamed Wiem Mkaouer
Rochester Institute of Technology

Rochester, NY, USA
mwmvse@rit.edu

Ilyes Jenhani
Prince Mohammad bin Fahd University

Khobar, Saudi Arabia
ijenhani@pmu.edu.sa

Montassar Ben Messaoud
LARODEC - Institut Supérieur de Gestion de Tunis
41, Avenue de la liberté, 2000, Le Bardo, Tunisia

montassar.benmassaoud@isgs.u-sousse.tn

ABSTRACT

In this paper, we present a multi-label active learning-based ap-
proach to handle the problem of classification of commit messages.
The approach will help developers track software changes, e.g.,
adding or updating existing features, fixing user-reported errors,
improving software performance, etc. We first constructed an un-
labeled dataset of commit messages where each commit message
is represented as a vector of feature values. The set of adopted
features were automatically generated from the original commit
messages using Term Frequency-Inverse Document Frequency (TF-
IDF) technique. Because many commit messages can be assigned
more than one commit class at the same time and in order to reduce
the effort needed to assign labels to each instance in a large set
of commit messages, we adopted an Active Learning multi-label
approach. Experimentations have shown that we could train an
accurate multi-label classifier model, in our case, a binary relevance
with logistic regression as a base classifier, by actively querying an
oracle for labels during the training process and with a reasonable
number of labeled instances.

CCS CONCEPTS

• Theory of computation → Active learning; • Software

and its engineering → Software creation and management;
• Software post-development issues → Software evolution

;

KEYWORDS

software maintenance, commit categorization, natural language
processing

1 INTRODUCTION

Collaborative and social-coding platforms have become the back-
bone of open source and industrial software development. They
organize the distributed and concurrent implementation and main-
tenance of software, when performed by several programmers. The

SAC ’19, April 8–12, 2019, Limassol, Cyprus
© 2019 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use.
Not for redistribution. The definitive Version of Record was published in The 34th
ACM/SIGAPP Symposium on Applied Computing (SAC ’19), April 8–12, 2019, Limassol,
Cyprus, https://doi.org/10.1145/3297280.3297452.

transparent nature of these platforms allows the exploration and
analysis of previously executed code changes, for various reasons
related to software engineering tasks such as, root cause analysis,
bug localization, objects traceability, approximation of development
effort and cost, etc. Each code change, i.e., commit, is characteri-
zed by a message, written in natural language by the committer,
describing the intention behind the committed change.

Commit messages are the main source for developers to track the
software evolution in terms of adding or updating existing features,
fixing user-reported errors , improving software performance, etc.
However, the growth of the number and variety of development
activities, makes their documentation, through commit messages,
non-trivial. Therefore, the manual exploration of commits is chal-
lenging for developers. Furthermore, the subjective nature of text
descriptions may hinder their understanding, especially when de-
velopers belong to various backgrounds and don’t share common
naming conventions [16]. Thus, the manual classification is a sub-
jective, context-biased and human-intensive task.

In this context, several studies have been focusing on automati-
cally classifying software changes based on the textual description
of their commits messages. These approaches rely on Information
Retrieval (IR) and Natural Language Processing (NLP) techniques
to extract relevant features, from the commit text, which decipher
the engineering nature of the code change and help developers in
identifying relevant changes [19]. On the other hand, training the
classifiers is expensive since it requires the manual classification
of an initial set of commits, and so, using a limited set of commits
challenges the scalability of the classification. According to Hindle
et al. [16] classifiers average accuracy of 60%, when trained using
a single project commits, decreases to an average of 52% when
evaluated across projects. Moreover, many studies addressed the
classification as a multi-class mono-label problem. Since developers
typically interleave multiple engineering tasks in a single commit
e.g., refactoring the design while adding a new feature, framing it
in one class is not optimal and it deteriorates the right distribution
of engineering tasks during the classification.

To cope with the above-mentioned limitations, we address the
commit classification as a Multi-Label Active Learning problem.
The active learning component decreases the necessary learning
effort and allows the expansion of the training set across projects.
The multi-labeling allows each commit to belong to more than one

https://doi.org/10.1145/3297280.3297452

class and so, it helps in accurately capturing the type of engineering
activity captured from the commit text.

We got our classification model by working on commits taken
from 12 distinct open source projects from Github. So in this new
approach we started our work by cleaning the data set, and pre-
process the developer's comments, in addition, we performed the
feature selection. Once we have our features which represent in
our work the most relevant keywords, we label them according to
the Swanson’s maintenance activities [25].

The experimental results show a decreasing pace of the Ham-
ming Loss (HL) [26] figure which corresponds to the set of the
labels that are incorrectly predicted to the total number of labels
and an increasing one of the F1 score that returns the harmonic
mean of precision and recall, with an average HL value 0.05 and an
average F1 score value 45.79%.

To summarize, our main contributions are as follows :
1. To the best of our knowledge, this is the first work to propose

a Multi-Label Active Learning Approach to actively learn com-
mit classification, to overcome the limitations of the multi-class
classification.

2. The usage of the active learning classification in order to avoid
labeling the whole dataset, while maintaining good classification
outcomes.

2 BACKGROUND

In this section we present the necessary taxonomy related to
commit messages and preliminaries on multi-label classification,
which include an elaboration of NLP techniques, multi-label classi-
fication and multi-label active learning.

2.1 Commits

Version Control Systems (VCS) allow the management of code
changes, applied throughout the lifecycle of software systems. It
serves as depot for the history of each code update characteristics,
including the committer identifier, commit time, ID, etc. Those
changes are saved as commits which actually correspond to a sub-
version of a project branch or repository. So that the developers can
navigate at any time those commits to check the cleanliness of the
code as well as the operational update. Therefore, those commits
are considered as checkpoints that illustrate the history of changes
and allow restore the points through which the developer can view
a version of a branch at a specific time or date. Moreover, commits
are generally accompanied by messages, the latter describes the
update done and it gives the monitors and supervisors transparency
to understand what is happening in the workflow of the concerned
repository.

As mentioned above, commits are considered as the software
changes that might be as simple as fixing a User Interface error
which usually requires minor changes or difficult such as adding a
whole new feature from scratch that sometimes needs the removal
or addition of classes or packages [8]. Recognizing and compre-
hending the nature of changes in a specific commit is worthy to
developers, tester, and managers due to their implication into the
software development.

For example, if a commit has been identified as a change in a
class, then that latter must be retested, and additional tests must be

Table 1: The commit categories

Corrective In this category we deal with the correction
of software bugs and defects especially those
related to the user interface

Perfective It concerns the improvement of the software de-
sign and the enhancement of the performance,
also the correction of the source code

Adaptive This class corresponds to the system modifica-
tion in order to adapt it to the new environment
such as the feature addition to making it more
effective

integrated and implemented. Also, this change allows the developer
to know that all the code elements that use this class will be impac-
ted. In addition, the manager will have the opportunity to assess
the costs and risks associated with different phases of deployment
[8].

Also, the developers are suffering from constant turnovers, and
the presence of the commits might be a very helpful way into the
integration of the new developers, it allows them to have at least
an idea about the work that has been done by the previous ones.
So due to the variety, diversity and importance of commits, we
decided in this work to use the 3 main categories proposed by [25]
and explained in Table1.

2.2 Natural Language Processing

For grammatical reasons, documents use a different form of a
word, that is why to select features (i.e. keywords) we preproces-
sed the commits in 3 steps : Stop-word removal, Stemming and
Lemmatization.

2.2.1 Stop-Word Removal.
In general terms, Stop-word removal can be defined as an infor-

mation retrieval to improve the algorithm results and is considered
as a way to remove commonly used words that carry little meaning.
These words include is, are, am, if, etc.

In our case we have two options whether we set a customized
list of English stop-words or simply choose the English stop words
as a criterion so that we can have relevant information while doing
the feature selection.

2.2.2 Stemming.
The term stemming is generally understood to mean a process

of reducing a word to its root form. For example, the word writes
and writing would both be reduced to write.

As any other technique the stemming has issues when it comes
to have relevant results, so while trying it, we noticed that the
stemmer always removes the last letter for example add-ad, remove-
remov. For this aim, we had to use the lemmatization technique to
improve the results.

2.2.3 Lemmatization.
Lemmatization normally aims to remove inflectional endings

only and return the base or dictionary form of a word, which is
known as the lemma.

2

For our work, we used the WordNetLemmatizer which returns
the input word unchanged if it cannot be found in WordNet, this
allowed us to have better and significant keywords.

2.3 Multi-Label Classification

It is well known that the multi-class classification acquires an
input to be associated with a one class label, yet sometimes these
inputs need a flexible setting which enables them to be associated
with a multi-class label and this is the case of many real-word pro-
blems such as classifying commits into the 3 maintenance activities
where we can find into a single commit more than one task for
example the developer added a new feature and fixed a bug so here
we label this commit as corrective and adaptive.

So, multi-label classification is recognized as being crucial in text
categorization [9], in sentiment analysis [27], and image classifica-
tion [15]. As a result of such wide range of applications, in recent
years, multi-label classification has become an emerging research
area.

2.4 Multi-Label Active Learning

Labeling a multi-label commit is challenging, since it is time
consuming and costly so, in this case, we need to use Active learning
which is, according to [15], a mechanism that aims to optimize the
classification performance while minimizing the number of needed
labeled data for training. There are mainly three active learning
approaches [5] :

— Membership query synthesis ;
— Stream-based selective sampling ;
— Pool-based sampling.

In the first approach the learner generates an instance. In the second
one, data points are made available continuously in a stream-like fa-
shion, and therefore decisions about whether an unlabeled instance
should or not be labeled are made individually or in small batches
[7]. The third setting which is the scenario that we adapted to our
work, assumes that a pool of unlabeled data is made available from
the onset of training [7].

3 PROBLEM STATEMENT

During the examination of commit messages for different ap-
plications, we noticed that many of these messages could not be
uniquely classified as "Corrective" OR "Perfective" OR "Adaptive".
In fact, if we look at the following example which is taken from our
dataset :

Table 2: A commit message belonging to more than one

class

App Commit
a2dpvolume Created a "car dock" device which has all the

features of a normal bluetooth device. Fixed da-
tabase error where on create it did not create
all columns. Fixed the reload list issue from the
edit device screen. I had not implemented the
reload intent call.

The commit in Table 2 illustrates an example of code changes
which corresponds to adding a container for the features of a blue-
tooth device while fixing errors related to information storage in
the application’s database. This commit message describes two
maintenance categories, hence should be classified as : perfective
and corrective at the same time. With multi-class classification ap-
proaches, where each instance must be labeled with one and only
one class label, a solution to this problem is to duplicate the instance
and assign to each copy one of the two class labels. The problem
with this solution is that it loses some useful information about
the dependency between these two (or more) class labels, which
means dependencies between maintenance categories will be hard
to detect. In this paper, we will adopt a multi-label classification
approach where each instance can be assigned any subset of the set
of all possible class labels. So, in a the multi-label setting, the above
message will be assigned the set of labels : {perfective, corrective}.

Besides their multi-label nature, software repositories contain
a huge number of commit messages making the labeling process
of each one of these messages very hard, error-prone and time-
consuming. Hence, instead of labeling the whole dataset we have
(which contains almost 30000 unlabeled instances), we will adopt a
multi-label Active Learning approach which aims to optimize the
classification performance while minimizing the number of needed
labeled training instances.

4 RELATEDWORK

Mining commits has been widely adopted by researchers for
addressing various problems that can be related to (re)assigning
developers for bug and issues [1], extracting developers decisions
[2] and eventually code change classification [3, 16, 22]. In this
section, we firstly report studies related to the classification of
commits messages with respect to the Swanson’s model [25], then
we enumerate the work related to active learning for multi-label
classification.

4.1 Commit classification

Diverse studies have been performed on developer's comments
in order to extract relevant data such as keywords which were
indicative information for researchers to classify commits [10,
11, 13, 16, 22] in the scope of single projects and cross projects.
In this alternative, Mockus et al. [12] used the word frequency
analysis and normalization to select relevant keywords in order to
do the classification. Levin et al. [22] used methods which are
similar to Fisher et al. [13] to classify commits into the three
categories and searched for relevant keywords by performing some
techniques like stemming and case-folding. Other studies added
auxiliary information related to authors [16] to classify developer's
commits. Amor et al. [11] introduced a methodology that uses
a slightly different technique without referring to the keywords
using a Naive Bayes Classifier to obtain a fine-grained classification
of code transactions from their textual description.

Recently, Levin et al. [23] suggested a method for automatically
classifying commits using source code changes (e.g statement added,
method removed, etc.) based on the study of Fluri's taxonomy of
source code changes for object-oriented programming languages
[3] into the scope of cross projects. Similarly to Levin et al., we

3

Figure 1: The commit classification framework.

as well performed commit classification into three maintenance
activities using the Swanson's categories [25] and applying different
technique of NLP on comments in order to get relevant information
into the scope of cross projects.

4.2 Active learning for multi-label

classification

Labeling a text takes a lifespan since it is expensive, subjective
and error-prone, so to reduce the human effort and time in the
labeling task we used the multi-label active learning approach.

The aim of Active Learning is that by repetitively increasing the
size of the carefully selected labeled data, it is possible to achieve
similar performance and objective via using a fully supervised data
set with a simple time and cost difference time that it takes to label
all the data. But, we note that in the previous studies and despite the
value and the importance of this problem, we found a few research
on multi-label active learning, most of them have concentrated on
the aspect of single-label classification [14, 18, 24].

5 METHODOLOGY

In this section we present the overall framework of our proposed
approach which is composed of three main phases : (1) Dataset
construction phase which includes a text preprocessing and a fea-
ture extraction step. (2) Multi-label active learning phase during
which a classifier model is built then evaluated and unlabeled ins-
tances are queried for labeling by an oracle. (3) Classification of
new commit messages.

The input of Phase 1 (Dataset construction) is a set of deve-
loper's commit messages collected from GitHub for 12 different
open-source projects. Hence, every commit message is conside-
red as an instance in our final dataset. Firstly, the original commit
messages undergone a preprocessing step in order to keep meaning-
ful messages. Secondly, we used natural language preprocessing
techniques to automatically extract useful keywords describing
the different messages. These keywords formed the features of our
dataset. The value of each feature corresponds to the frequency of
it s related keywords in the original message.

The input of phase 2 (Multi-label active learning) is the dataset
generated from phase 1. The output of this phase is an accurate
classifier model (a logistic regression model in our case) trained on
a subset of multi-labeled instances.

New commit messages will be classified in Phase 3. In fact, every
new message will be transformed into a vector of numeric values,
where each value corresponds to the frequency of each of one of
the features that were selected in Phase 1. This vector will be then
presented to the classifier model trained during Phase 2 in order to
obtain it's commit type(s).

More details about the different phases are provided in what
follows :

Phase1- Step1 : Text Preprocessing

Before starting this step, we cleaned up our original dataset (i.e.
the set of original commit messages) by performing the following
actions : (1) Removal of special characters, (2) Removal of punc-
tuation marks, (3) Removal of short messages (with a length < 6
characters), and (4) Normalization of white-spaces.

After performing the above cleaning step, we moved to the text
preprocessing step which consists of : (1) Stop-Word Removal, (2)
Stemming, and (3) Lemmatization.

Phase1- Step2 : Feature Extraction

During this step, we use the set of the preprocessed commit
messages as an input, and then we start extracting useful features
(i.e. keywords) from text using the TF-IDF weighting scheme. This
standard weighting scheme calculates the weight of the word in a
text corpus by performing the product of its term frequency (TF)
and inverse document frequency (IDF). A document here refers to
a commit message and a corpus corresponds to the entire set of
commit messages. The TF-IDF of a word t with respect to a commit
message d reflects how important the word t is to a commit message
d in a corpus (i.e. the entire set of commit messages).

The term frequency (TF) of a word t corresponds to the number
of times t occurs in a commit message d. Hence, if we have a lot
of occurrences of the same word t, we can expect an increase in
its TF-IDF value. The inverse document frequency (IDF) of a word
t corresponds to the logarithm (base 10) of the ratio of the total
number of commit messages to the number of messages in which t

4

occurs. If the word t appears in many commit messages, then we
can expect that it's TF-IDF will get lower.

For a given term (i.e. word) /t/ and a document (i.e. a commit
message) /d/, the TF-IDF can be evaluated as follows :

TF − IDF(t, d) = TF (t , d) × IDF (t) (1)

IDF(t) = log
nd

DF (d , t) (2)

Where nd is the total number of commit messages and DF(d,t) is
the number of commit messages that contain the word t.

This approach helped us extract only useful keywords from
the different commit messages. These keywords went through a
refinement process where some less relevant features (e.g. domain-
specific keywords, developers’ information, etc.) were removed.
Table 3 shows the list of the adopted features.

Each commit message m corresponds to an instance in our final
dataset. Each instance was represented as a vector of numerical
values where each value corresponds to the frequency of each one
of the below adopted features in the message m.

Table 3: List of adopted features

Fix Release Master
Support change Use
List Merge Refactoring
Test Add Branch
Build Set Check

Request Make View
Commit Remove Comment

Updatesigned Pull Open
Cache Revert Translation
New Issue Update

Phase 2 : Multi-label active learning

Having a large dataset of unlabeled commit messages, we adop-
ted an active learning approach with the objective of building an
accurate multi-label classifier with a minimum of labeling effort,
i.e., without the need to label all commit messages in the dataset
which is very time-consuming.

We started with labeling a small set of instances (known as the
seed) that constituted the initial training set. After choosing the
multi-label approach (binary relevance with logistic regression as
base classifier) as well as the multi-label query strategy to use, in
each iteration of the active learning process, the query strategy que-
ries an oracle to label a subset of the remaining unlabeled instances.
New labeled instances were added to the training set. The classifier
model is then trained on the updated training set and tested against
a separate testing set.

For this phase, we used Libact [17], which is a python package
designed for the active learning task. For the multi-label setting,
Libact implements the following active learning query strategies :

— Binary Minimization (BinMin) : This query strategy calcu-
lates the uncertainty related to the classification of each label
independently.

— Maximal Loss Reduction with Maximal Confidence (MMC) :
This query strategy evaluates the uncertainty related to the

classification of each label by calculating the difference bet-
ween predictions which have a fixed formula from two dif-
ferent multi-label classifiers.

— Multi-label Active Learning with Auxiliary Learner (MLALAL) :
This query strategy is considered a more general algorithm
since it has a major learner that gives a binary output for each
label and an auxiliary learner is used to provide information
on each label to guide query decisions [17].

We choose the MLALAL query strategy since it is a generaliza-
tion of both MMC and BinMin strategies. MLALAL uses a major
learner (binary relevance with logistic regression as a base learner),
an auxiliary learner (binary relevance with SVM as a base learner)
and on the following query criteria :

— Hamming Loss Reduction (HLR) : This criterion assesses a strict
disagreement using the decisions outputs of both classifiers
to determine whether there is a disagreement or not between
predicted labels.

— Maximum Margin Reduction (MMR) : This criterion utilizes
a major classifier which outputs confidence values for the
predicted classes and an auxiliary classifier that defines the
contradictory predictions and outputs decisions (positive vs.
negative).

— Soft Hamming Loss Reduction (SHLR) : This criterion tries to
balance between MMR and HLR via a function that specifies
the influence of each approach in the final score.

Our choice for the MLALAL query strategy with its SHLR crite-
rion was based on a work presented in Tien et al. [17] that compared
the three criteria and showed that SHLR is usually the best query
criterion across different data sets and different combinations of
major/auxiliary learners [17].

Phase 3 : Classification of new commit messages

Now that we have trained and built an accurate enough logistic
regression model, we will use it to determine the commit class(es)
for each newly posted commit message. This latter will be transfor-
med into a vector of numeric values where each value corresponds
to the term frequency of each one of the adopted features (i.e. fea-
tures listed in Table 3) in the message at hand. The vector will then
be handled by the classifier model and its corresponding commit
type(s) are determined.

6 EXPERIMENTAL EVALUATION

In this section, we explain the dataset specification and present
an experimental evaluation to challenge the effectiveness of our
approach when applied to commits classification.

6.1 Data Preparation & Parameter Tuning

The evaluation of work primarily relies on its accuracy on clas-
sifying commits messages. Thus, the choice of a wide variety of
potential messages is important. And so, we diversified the com-
mit sources, i.e., projects while making sure they reflect real-world
projects that contain all the possible engineering cycles including
commits related to design improvement, requirements implementa-
tion, feature updates, bug fixes etc. In this context, our candidate
repositories were randomly selected but conforming to the well-
engineered curated GitHub Projects [20].

5

The selection criteria were applied using Reaper [20] and the
commits were extracted using GitcProc [6], a dedicated commit
crawler. Overall, we aimed to input a significantly high number of
commits, we obtained 29604 commits from 12 open source projects.
Details about these projects are provided in our project website 1
and in Table 4 :

Table 4: List of studied projects (project names were shor-

tened for visibility)

Apps #Commits #Contributors #Star #Fork
geocaching 8418 93 868 491

anuto 364 24 116 36
adam.aslfms 300 38 380 90
filemanager 1344 96 2248 805
android.reddit 627 23 367 174
android.keepass 405 33 1062 334
faircode.netguard 1188 26 1768 428
fastaccess.github 939 86 3817 537
ccrama.redditslide 2526 65 991 218

mozstumbler 2159 84 540 217
keychain 4422 96 1103 366

org.videolan.vlc 6912 99 219 70

Before conducting the feature selection step, we performed stem-
ming and lemmatization using Snowball Stemmer 2 and Word-
Net Lemmatizer 3. For text vectorization parameters, we set min-
document frequency to 0.01 (resp. max to 0.95) and we fixed the
number of features to 50.

For machine learning, we used the scikit-learn package for Py-
thon [21]. After the text processing and feature selection, we construc-
ted a training set of 1200 commits, manually labeled into three
maintenance activities (i.e. corrective, perfective and adaptive).

Since we have to deal with a very long labeling process, we have
chosen to use libact 4 python package.

6.2 Research Setting

The goal of this experiment consists of investigating the accuracy
of the multi-label classification and the impact of the active learning
on the rapid generation of acceptable results. Respectively, we
address the following research questions :

RQ1. How effective is our approach? The first research ques-
tion explores the performance of our approach in accurately clas-
sifying commits messages. We measure the classification perfor-
mance using metrics that we detail in the below-subsection.

RQ2. What is the impact of the active learning? The pur-
pose of this research question is to determine the effect of active
learning during the classification by verifying how fast the classifi-
cation converges into a satisfactory rate with a relatively low set
of commits.

1. https ://smilevo.github.io
2. https : //www .nltk.org/modules/nltk/stem/snowball.html
3. https : //www .nltk.org/modules/nltk/stem/wordnet .html
4. https : //libact .readthedocs.io/en/latest/

6.3 Evaluation Metrics

Multi-label classification is based on finding a transformationmo-
del that maps a set of input features x to binary vectors y (assigning
only the values of 0 or 1 for each element in y). There is currently
no common methodology for evaluating multi-label classifications.
To do the evaluation accurately, several measures from multi-class
classification and information retrieval were adopted and adapted.
We use the following metrics to measure performance :

Hamming Loss is the fraction of the labels that are incorrectly
predicted to the total number of labels. Since it is a loss function,
lower the value better is the performance [26].

HammingLoss(h) = 1
N

N∑
i=1

1
L
|h(xi)Δyi | (3)

being yi the set of true labels associated with the example xi ,
h(xi) the set of predicted labels, N the number of examples, L the
total number of possible class labels andΔ the symmetric difference
between the two sets.

Precision is the proportion of true positives (TP) to the sum of
true positives and false positives (FP) averaged over all examples.

Precision(h) = TP
TP + FP

=
1
N

N∑
i=1

|h(xi) ∩ yi |
|yi |

(4)

Recall is the ratio of true positives to the sum of true positives
and false negatives (FN) averaged over all examples.

Recall(h) = TP
TP + FN

=
1
N

N∑
i=1

|h(xi) ∪ yi |
|h(xi)|

(5)

We also use a measure that returns the harmonic mean of preci-
sion and recall, F1-score, defined as :

F1 =
2 × (precision × recall)
(precision + recall) (6)

where F1 score reaches its best value at 1 and worst score at 0.

6.4 Results

RQ1 : How effective is our approach?

Figure 2: Evolution of the MLALAL learner Hamming Loss

measure over 100 iterations.

6

Figure 3: Evolution of the MLALAL learner accuracy in

terms of F1 measure over 100 iterations.

In Figures 2 and 3, we reported the average values of the perfor-
mance of the learner measured with Hamming loss and F1 loss in a
train-test experiment. In our case, the HL ranged between 0.13 and
0.01 along with the 100 iterations (with a batch of 50 instances). The
best HL scores are reached at the short end of the curve (iterations
80 to 100). Considering the shape of the curve it could be said that
the learner actually performs well in training and gets to know
better the classes.

On the other hand, we notice in Figure 3 the reverse correlation
between HL and F1 scores. The increasing slope of the curve leads
us to conclude that the value of the precision and recall is being
balanced throughout the 100 iterations.

Furthermore, we should note that the classifier may encounter
some ambiguities due to the nature of keywords’ multiple meanings,
which justifies the extent of variation in the curve. Nonetheless, our
45.79% average F1-score is better than the 46.32% obtained in Levin
et al. [23]. This proves that our approach is quite effective when
dealing with the multi-label classification. We also found 0.056 as
average performance on hamming loss which is considered very
promising when comparing it to the results found in Meng et al.
[28].

RQ2 : What is the impact of the active learning?

The use of active learning in our approach appears to be the
appropriate choice since our main goal here was to improve the
multi-label classification performances.

In total, we performed 100 iterations containing 50 instances.
This enabled us to manually label the subset of 5000 instances from
the total number of 29604 commits. The prediction performance
remains to be very satisfactory though a small number of iterations.

Also, to assess the impact of the active learning we conducted a
comparison between our classifier model and 4 other scikit-learn
multi-label classifiers, namely, Decision Tree (DT), K-Nearest Neigh-
bors (KNN), Multi-Layer Perceptron (MLP) and Random Forest (RF).

As shown in Figure 4, we notice that there is a huge difference
in terms of results between our classifier model and the other ones
that are not using active learning strategies. We also note that our
classifier model has the best result in terms of HL and the second
best performance in terms of F1 score. This proves the impact

of active learning on the performance of the adopted approach
compared to the others.

Figure 4: Comparison of performance results between clas-

sifiers.

7 DISCUSSION AND LIMITS

From the above experiments we note that MLALAL with the
criterion SHLR performs promising results, especially with this
diversity of data on the scope of cross-projects. Furthermore, these
results in figure 4 show the importance and the efficiency of the
active learning process that provides an interaction with the human
to guarantee a correct classification compared to the results of the
4 other classifiers that use a fully labeled dataset instead.

However, we aware that our research may have some limitations
that could have influenced the obtained results, the first is the class
imbalance that was noticed while performing our study by the fact
that the majority of the commits belong to the perfective class and
this explains the high cost of the maintenance task.

Another interesting observation is that the perfective commits
are more related to the adaptive ones and they are followed up by
the corrective messages.

8 THREATS TO VALIDITY

Threats to the validity of our classification are reported in this
section.

For the selection of our dataset, we randomly selected the com-
mits from each GitHub repository of the studied projects. There is
no guarantee that the selected set of commits is a good representa-
tion of all other projects, and also we cannot verify whether they
represent a good distribution of commit types, and this is a threat
to the internal validity of our work, and this may have a direct
impact on the classification results. For that purpose, we mitigate
this issue by selecting more than one project and we selected a well-
distributed commits over time, performed by various developers.
Also, some commits may not be significant to source code changes,
such as updating documentation. so we excluded all commits which
do not operate on source files and we did not consider any commits
which their description was empty. The external validity of this
work is linked to the generalization of our findings, and whether
our findings only apply to the commits being analyzed. To mitigate
this threat, we used a diverse set of well-established projects to be

7

closer to real-world setting, and we performed our experiments
across projects to challenge the performance of our classification
in several scenarios.

9 CONCLUSION AND FUTUREWORK

In this paper, we propose an approach that actively learns the
commit classification into maintenance activities. First of all we
cleaned the set of commit messages so that we can perform the
preprocessing step using the stop-word removal, stemming and
lemmatization as NLP techniques, then we extracted the 50 most
relevant features (i.e. keywords) from commit texts using TF-IDF
and transformed into vectors of frequencies. Secondly, we used the
extracted features to train our classifier model and to test it against
a separate testing set after updating the training set. The output of
the process of the multi-label active learning will be used into the
classification of a new commit message to determine its class label
after transforming this commit into a vector of frequency that is
handled by the classifier model.

To assess the performance of our approach, we used 29604 as a
total number of commits from 12 open source projects. The expe-
riment results show that, we achieved the best performance in terms
of hamming loss with an average of 0.05 and a good performance
i.e., F1 score with an average of 45.79%.

Finally, we need to mention that our work is still subject to im-
provement, so for future works we plan to extend our approach and
work on the changes of the nature of commits using the commit
time to see the difference between them regarding their belonging
to a specific category (i.e. Corrective, Perfective, Adaptive). We
also aim to better classify our commits and correlate it with code
changes like [23] while taking into consideration the problem of
class imbalance that may impact the performance results. Moreover,
to extend our approach we plan to support the automated classifica-
tion of commits written in different languages relying on Babelnet
for multilingual classification [4].

RÉFÉRENCES

[1] Rafi Almhana, Wiem Mkaouer, Marouane Kessentini, and Ali Ouni. 2016. Re-
commending relevant classes for bug reports using multi-objective search. In
Proceedings of the 31st IEEE/ACM International Conference on Automated Software
Engineering. ACM, 286–295.

[2] Lingfeng Bao, David Lo, Xin Xia, XinyuWang, and Cong Tian. 2016. How android
app developers manage power consumption? : An empirical study by mining
power management commits. In Proceedings of the 13th International Conference
on Mining Software Repositories. ACM, 37–48.

[3] B.Fluri and H.C.Gall. 2006. Classifying Change Types for Qualifying Change
Couplings.. In ICPC. IEEE Computer Society, 35–45.

[4] Erik Boiy and Marie-Francine Moens. 2009. A machine learning approach to
sentiment analysis in multilingual Web texts. Inf. Retr. 12, 5 (2009), 526–558.

[5] B.Settles. 2010. Active learning literature survey. Technical Report. University of
Wisconsin.

[6] Casey Casalnuovo, Yagnik Suchak, Baishakhi Ray, and Cindy Rubio-González.
2017. GitcProc : a tool for processing and classifying GitHub commits. In Procee-
dings of the 26th ACM SIGSOFT International Symposium on Software Testing and
Analysis. ACM, 396–399.

[7] Everton Alvares Cherman, Yannis Papanikolaou, Grigorios Tsoumakas, and Ma-
ria Carolina Monard. 2017. Multi-label active learning : key issues and a novel
query strategy. Evolving Systems (2017), 1–16.

[8] Natalia Dragan, Michael L Collard, Maen Hammad, and Jonathan I Maletic. 2011.
Using stereotypes to help characterize commits. (2011).

[9] B.Yang et al. 2009. Effective multi-label active learning for text classification.
In KDD ’09 : Proceedings of the 15th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, New York, NY, USA, 917–926.

[10] J.Sliwerski et al. 2005. When do changes induce fixes?. In MSR. ACM.

[11] J.J Amor et al. 2006. Discriminating Development Activities in Versioning Sys-
tems : A Case Study,in Proceedings PROMISE. Citeseer, 2006.

[12] Mockus et al. 2000. Identifying Reasons for Software Changes using Historic
Databases.. In ICSM. IEEE Computer Society, 120–130.

[13] M.Fischer et al. 2003. Populating a Release History Database fromVersion Control
and Bug Tracking Systems. Proceedings of the International Conference on Software
Maintenance (2003).

[14] T.Luo et al. 2005. Active Learning to Recognize Multiple Types of Plankton.
Journal of Machine Learning Research (2005), 589–613.

[15] X.Li et al. 2004. Multi-label SVM active learning for image classification.. In ICIP.
IEEE, 2207–2210.

[16] Abram Hindle, Daniel M German, Michael W Godfrey, and Richard C Holt. 2009.
Automatic classication of large changes into maintenance categories. In Program
Comprehension, 2009. ICPC’09. IEEE 17th International Conference on. IEEE, 30–39.

[17] C-W Hung and H-T Lin. 2011. Multi-label active learning with auxiliary learner.
In Asian conference on machine learning. 315–332.

[18] David D. Lewis and William A. Gale. 1994. A Sequential Algorithm for Training
Text Classifiers. CoRR (1994).

[19] Daoyuan Li, Li Li, Dongsun Kim, Tegawendé F Bissyandé, David Lo, and Yves Le
Traon. 2016. Watch out for this commit ! a study of influential software changes.
arXiv preprint arXiv :1606.03266 (2016).

[20] Nuthan Munaiah, Steven Kroh, Craig Cabrey, and Meiyappan Nagappan. 2017.
Curating GitHub for engineered software projects. Empirical Software Engineering
22, 6 (2017), 3219–3253.

[21] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Ber-
trand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
Vincent Dubourg, Jake VanderPlas, Alexandre Passos, David Cournapeau, Mat-
thieu Brucher, Matthieu Perrot, and Edouard Duchesnay. 2011. Scikit-learn :
Machine Learning in Python. Journal of Machine Learning Research 12 (2011),
2825–2830.

[22] S.Levin and A.Yehudai. 2016. Using Temporal and Semantic Developer-Level
Information to Predict Maintenance Activity Profiles. CoRR (2016).

[23] S.Levin and A.Yehudai. 2017. Boosting Automatic Commit Classification Into
Maintenance Activities By Utilizing Source Code Changes.. In PROMISE, Burak
Turhan, David Bowes, and Emad Shihab (Eds.). ACM, 97–106.

[24] S.Tong and D.Koller. 2002. Support vector machine active learning with applica-
tions to text classification. J. Mach. Learn. Res. 2 (2002), 45–66.

[25] E. B. Swanson. 1976. The dimensions of maintenance. IEEE Press, 492–497.
[26] Grigorios Tsoumakas and Ioannis Katakis. 2007. Multi-Label Classification : An

Overview. IJDWM 3, 3 (2007), 1–13.
[27] T.S.Shikler and P.Robinson. 2009. Classification of complex co-occurring affective

states from their expressions in speech.
[28] Rajasekar Venkatesan and Meng Joo Er. 2016. Multi-Label Classification Method

Based on Extreme Learning Machines. CoRR abs/1608.08435 (2016).

8

	Abstract
	1 Introduction
	2 Background
	2.1 Commits
	2.2 Natural Language Processing
	2.3 Multi-Label Classification
	2.4 Multi-Label Active Learning

	3 Problem Statement
	4 Related work
	4.1 Commit classification
	4.2 Active learning for multi-label classification

	5 Methodology
	6 Experimental evaluation
	6.1 Data Preparation & Parameter Tuning
	6.2 Research Setting
	6.3 Evaluation Metrics
	6.4 Results

	7 Discussion and limits
	8 Threats to Validity
	9 Conclusion and future work
	Références

