
Who Added that Permission to My App? An
Analysis of Developer Permission Changes in Open

Source Android Apps

Daniel E. Krutz, Nuthan Munaiah, Anthony Peruma, and Mohamed Wiem Mkaouer
Department of Software Engineering

Rochester Institute of Technology

Rochester, NY, USA

Email: {dxkvse, nm6061, axp6201, mwmvse}@rit.edu

Abstract—Android applications rely on a permission-based
model to carry out core functionality. Appropriate permission
usage is imperative for ensuring device security and protecting
the user’s desired privacy levels. But who is making the important
decisions of which permissions the app should request? Are they
experienced developers with the appropriate project knowledge to
make such important decisions, or are these crucial choices being
made by those with relatively minor amounts of contributions to
the project? When are these permission-related decisions being
made in the app’s development life cycle? We examined 1,402
Android version control repositories containing over 331,318
commits including 18,751 AndroidManifest.xml versions to better
understand when, why, and who is adding permissions to apps.
We found that (I) developers with more experience are more
likely to make permission-based changes (II) permissions are
typically added earlier in apps’ commit lifetime, but their
removal is more sustained throughout the commit lifetime (III)
developers reverting permission-based changes are typically more
experienced than developers who initially made the change being
reverted.

I. INTRODUCTION

Android employs a permission-based system where apps

require specific permissions to carry out specific functionali-

ties. Developers must explicitly state the permissions an app

may request, while the end user must accept any requested

dangerous permissions. Some permissions include the ability

to read SMS messages, record audio through the phone’s

microphone, and access the user’s location [5].

The decision of which permissions an app should have

access to should not be taken lightly since they may

disrupt the user and carry a variety of possible security and

functional implications. Some of which include under and

over-permissions, increased app susceptibility to malware and

unwanted data leakage to ad libraries [11]–[13], [25]. But who

is making these important decisions about the permissions

an app should request and at what points in the software

development process are these decisions being made? The
goal of our work is to better understand how permissions
fit into the development process. In this work, we discuss

our analysis of more than 1,400 open source Android app

repositories. Our work is guided by the following research

questions:

RQ0 Permission Exploration: Who tends to make

permission-based changes to apps and when are such changes

typically made in apps’ commit lifetime?

RQ1 Permission Reversion Frequency: How often are

permission-based changes to apps reverted and who is

making these decisions?

Our primary findings suggest that a wide range of developers
typically make permission-based changes, but developers
with higher project ownership scores were more likely to
revert existing permissions.

The rest of the paper is organized as follows: In Section II

we discuss related work and Section III provides background

information on Android permissions. Section IV presents our

collection and analysis process, while Section V addresses our

research questions. Section VI discusses limitations and future

work to be conducted, and Section VII concludes our work.

II. RELATED WORK

There has been a substantial amount of work in under-

standing why Android permissions are inappropriately used,

and the negative implications misuse carries. Grace et al. [13]

conducted work on permissions probing, which is when a 3rd

party component attempts to use a permission in the hope that

the attached app has requested it from the user. If the attached

app has requested a permission, then the component will also

have access to that permission as well. This is often done to

collect, and transmit potentially sensitive information which

should not be normally available to the 3rd party component.

This work found that more than half of all ad libraries try to

probe for open permissions.

Stevens et al. [22] analyzed 10,000 free Android apps and

found a strong sub-linear relationship between the popularity

of a permission and the frequency of its misuse. They found

that developers were more likely to misuse a permission

when they did not understand it, and that the popularity of a

permission is strongly associated with its misuse. A powerful

method of avoiding permission misuse is through developer

education and community support. Krutz et al. [14] created a

2017 IEEE/ACM 4th International Conference on Mobile Software Engineering and Systems (MOBILESoft)

42

2017 IEEE/ACM 4th International Conference on Mobile Software Engineering and Systems (MOBILESoft)

165

2017 IEEE/ACM 4th International Conference on Mobile Software Engineering and Systems (MOBILESoft)

165

Author Preprint

public dataset of over 1,100 Android apps from the F-Droid [2]

repository, but only analyzed the apps using existing static

analysis tools.

Many projects have analyzed software repositories to ex-

amine questions ranging from if the commit message of an

app had a correlation with the quality of the commit [19] to

analyzing developer sentiment in commit logs [21]. However,

our work indicates the first known of its kind to examine

permissions using the version control history of a project.

Although previous works have examined developer code own-

ership and their implications [15], [17], [18], none have

focused on mobile applications as was done in our study.

III. ANDROID PERMISSIONS

Android apps require specific permissions to carry out

specific functionality. An objective of this system is the the

principle of least privilege or granting an app the least amount

of privilege that it needs to properly function [11]. This is

intended to not only limit the access an app has to unintended

permissions, but limit the effects that malware may have on

a device [10], [20]. For example, in order for an app to read

SMS messages, it must request the READ_SMS permission.

The AndroidManifest.xml file contains all requested permis-

sions for an app. While many permissions are considered to be

less risky, others carry significantly more potentially hazardous

risks and are known as Dangerous permissions [5].

Deciding on the permissions an app should request is

considered to be one of the most sensitive activities undertaken

during app development due to the potential security risks [11],

[16] and possible negative effects on the user’s perception of

the app [8]. Recent studies revealed that developers frequently

misuse permissions by either not adding enough permissions

to support requested functionality, or by adding unnecessary

permissions that are not needed by any components in the app.

This problem may be caused by a variety of factors including

a lack of permissions based knowledge by the developers [22].

Unfortunately, there is no permission enforcement mechanisms

in Google Play, which frequently gives developers too much

freedom when posting apps to the Google Play store [7].

IV. DATA COLLECTION AND ANALYSIS

Our first step was to collect open source Android repos-

itories from F-Droid [2], a popular open source repository

of Android apps. We collected the git repositories for each

app, which contains all version control information about

each project and range from 2009 to present in numerous

app categories. When collecting permissions, we recorded

all permissions, including those which were custom. Table I

shows an overview of collected data.

At the time of our analysis, F-Droid contained information

for 2,372 open source Android apps. From this resultset our

tool scanned for the existence of the AndroidManifest.xml
file along with the commit history of the file. This process

identified 1,402 apps that had a AndroidManifest.xml file

with a history of commits. We were unable to collect the

TABLE I: Data Overview

Item Count
Analyzed Apps 1,402
Unique Permissions (including custom) 238
Manifest File Versions 18,751
Number of Project Committers 11,920
Permissions Added 4,494
Permissions Removed 480
Total Project Commits 331,318

repositories of the other projects since they were not publicly

accessible, or located in GitHub.

To analyze the collected repositories, we created a tool

known as Open Source Android Repository Analyzer (oS-

ARA) [4]. Using this tool, we extracted version control

commit information such as when the commit was made and

by whom. The tool then extracts all committed AndroidMan-
ifest.xml files from the version control history and records all

modified permissions in these files. Using this collected infor-

mation, oSARA then determines all altered permissions, who

made the alterations, and when they were made. The commit-

ted version of the AndroidManifest.xml file was also extracted

from the repositories, and all metadata was stored in a SQLite

database. The tool ran for over 24 hours on a dedicated server

to download approximately 50 GB of repository content and

then analyze its commit history. Using this information, we

were able to correlate the altered Android permissions with

a specific commit in the version control repository. We then

calculated the Developer’s Commit Ratio (DCR) for each app,

which is defined as: DCR = (IndividualcontributorCommits
TotalAppCommits).

This ratio represents the number of contributions made by a

given developer for a project divided by the number of all

commits done by all project’s contributors. In other terms,

it represents the contribution share of every author for a

given project. In this work, we use DCR as a proxy for

developer experience within a project. For each committed

AndroidManifest.xml file that contained altered permissions,

we recorded this DCR value. We only examined the master

branch for each git repository, and only considered apps with

at least 2 committers.

To provide researchers with more data points to develop

new hypotheses, metadata of the apps were obtained from the

Google Play store. Presently, Google does not offer an API to

retrieve this data, so a web scraping tool was built to scrape

the metadata from the app’s Google Play web page. The use

of text files by F-Droid to hold app related metadata proved

to be challenging as multiple regular expressions had to be

written to parse the files.

V. EVALUATION

We next addressed our research questions using this data:

RQ0 Permission Exploration: Who tends to make
permission-based changes to apps and when are such changes
typically made in an apps’ commit lifetime?

For RQ0, we explored certain aspects (such as who and

when) of permission-based changes to apps. To understand

43166166

Author Preprint

the developers making permission-based change to apps, we

compared the distributions of DCR for developers who had

made permission-based changes to apps and those who had

not. Since we are comparing the DCR of developers across

all the apps in our data set, the number of developers who

contribute to each application is a confounding factor. We

accounted for this by dividing the DCR of a developer by

the number of developers who had contributed to the app.

Fig. 1: Comparing the distribution of DCR (controlled for

number of developers contributing to an app) of developers

who had altered permission(s) and developers who had not

Figure 1 shows a plot comparing the two distributions and

shows that developers who made permission-based changes

have a higher DCR than developers who did not. To quanti-

tatively assess the difference in distribution, we used the non-

parametric Mann-Whitney-Wilcoxon (MWW) test to assess if

there was an association between DCR and the likelihood of

a developer making permission-based changes. The outcome

from the MWW test revealed, not surprisingly, that developers

with a higher DCR were more likely to make permission-

based changes to apps than developers with lower DCR. The

outcome was statistically significant with p-value � 0.01. We

went further to analyze if there was any difference between

the DCR of developers who added permissions and that of

developers who removed permissions. The outcome from the

MWW test was not statistically significant indicating that the

distributions of DCR of developers who added permissions is

similar to that of developers who removed permissions.

To understand when, in apps’ commit lifetime, are

permission-based changes made to apps, we computed the

time when each permission-based change was made to an app.

The time of a permission-based change was computed as the

number of days from the first commit to the apps’ source code.

Here the commit lifetime of an app is a confounding factor,

therefore, we expressed the time of a permission-based change

relative to the apps’ commit lifetime (i.e. the number of days

between the first and last commit to the apps’ source code).

To understand the chronology of permission-based changes

at a lower level of granularity, we grouped the changes by

permission type and segregated the changes into additions

and removals. Figure 2 shows the distribution of the times

of permissions change. As seen in the figure, the addition of

permissions, regardless of the type, are typically done when an

app is fairly new and further additions tend to be spread over

the entirety of the commit lifetime of the app. The removal of

permissions, on the other hand, is observed throughout apps’

commit lifetime.

RQ1 Permission Reversion Frequency: How often are
permission-based changes to apps reverted and who is making
these decisions?

In RQ0, we found that there is no statistically significant

difference between the DCR of developers adding a permission

and that of developers removing a permission. In RQ1, we

introduced a temporal factor into the analysis. In other words,

we wanted to investigate the frequency with which permission-

based changes are reverted i.e. a permission added by a

developer is later removed by another developer, or vice versa.

We further wanted to compare the DCR of the developer

reverting the permission-based change to that of the developer

who initially made the change.

TABLE II: Reversion frequency of permission-based changes

Reversion Type # Occurrences # Higher DCR
Removal 106 61 (57.54%)
Addition 33 22 (66.67%)

Table II displays the number of occurrences when

permission-based changes were reverted. In more than half

the reversions (# Higher DCR) the DCR of the developer

reverting the permission-based change is higher than that of

the developer who initially made the change. This shows

that developers with lower commitments to the project

tend to make permission-related decisions that were later

reverted by more experienced developers. This interesting

observation needs to be further investigated to decipher

the motivation behind introducing the permission change

and also the reasoning behind its revert. The average

difference in DCR between the reverting developer and the

developer who initially made the change was 0.4184 and

0.4113 for removal and addition. The top three permissions

later removed by developers with higher DCR were

READ_EXTERNAL_STORAGE,RECEIVE_BOOT_COMPLETED,

and WRITE_EXTERNAL_STORAGE. The top three

permissions later added by developers with higher DCR were

ACCESS_NETWORK_STATE, ACCESS_MOCK_LOCATION
and WAKE_LOCK. Further analysis is needed to explain

the probable reasons for a permission-based change of a

developer with lower DCR being reverted by one with a

higher DCR. One possible reason could be that the initial

permission change may have been done in error (an under

or over-privilege) with the reversion being the corrective

action. A more in-depth analysis of the commit message

44167167

Author Preprint

Fig. 2: Distribution of times of permissions change relative to apps’ commit lifetime for addition and removal of permissions

when the permission-based change was reverted may be first

step to understanding the phenomenon. A cursory analysis of

some of the commit messages did not reveal the possibility

of erroneous commits but the messages were too brief to

conclusively say one way or the other.

VI. LIMITATIONS AND FUTURE WORK

Although our results provided several interesting findings,

there are areas which can be more thoroughly explored and

elaborated upon. In our analysis, we studied open source

Android apps in a variety of categories, but only from a single

source (F-Droid). In future work, we will expand our app se-

lection and include apps collected from other sources as well.

However, this could be difficult since finding a substantial

number of other open source repositories for Android apps

may be a challenging process.

Like most research which examines version control sys-

tems, we are unable to definitively determine who is actually

making each commit. The same committer could use different

accounts, or developers could be using pair-programming, thus

creating a situation where two developers modify the software,

but only one is given credit for the submission.

Previous work has analyzed apps by examining version

control repositories and many studies have integrated devel-

oper interviews or user surveys in their analysis [23], [24].

Our work should be expanded to include more developer

interviews and more qualitative information. Further work

could be done to examine apps at different development stages

using various static analysis tools to examine a variety of

security and quality based metrics of each app. Some potential

tools include PScout [6], FindBugs [3], AndroGuard [1],

StaDynA [26], or TaintDroid [9]. Android apps often suffer

from permission-misuse where apps request too few, or too

many permissions [11], [13]. Future work may be done to

analyze if the DCR score of the author of a permission change

correlates to a higher rate of permission misuse. This analysis

may be conducted using a permissions analysis tool such as

PScout [6]. Future work could determine if more mature apps,

ones who have had longer version histories, tend to have

high rates of permission misuse in comparison to new apps.

Research may also be conducted to determine at what phases

under and over-privileges are being added to apps.

VII. CONCLUSION

Summary: We examined the version control repositories of

1,402 Android apps to better understand how permissions

decisions are being made. We created a publicly accessible

tool oSARA to analyze the repositories.

Findings: In the exploration question, we found that the devel-

opers with higher DCR were more likely to make permissions-

based changes to apps than other developers. Among the

developers who made permissions-based changed, we found

no difference in the DCR of developers who add permissions

and those who remove permissions. Analyzing the chronology

of the permission-based changes, we found that the addition of

permissions is typically done earlier in apps’ commit lifetime.

However, the removal of permissions is a more sustained

activity throughout apps’ commit lifetime.

In the reversion question, when we introduced a temporal

factor in analyzing the reversion of permissions-based changes,

we found that in more than half of the permissions-based

changes in which a developer reverted a permission-based

change, the DCR of the developer making the reversion was

higher than the developer who initially made the permissions

change that was reverted.

45168168

Author Preprint

REFERENCES

[1] Androguard. https://code.google.com/p/androguard/.
[2] F-droid - free and open source android app repository. https://f-droid.org.
[3] Findbugs. http://findbugs.sourceforge.net/.
[4] osara: Open source android repository analyzer.

https://github.com/dan7800/oSARA.
[5] System permissions. https://developer.android.com/guide/topics/

security/permissions.html.
[6] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie. Pscout: Analyzing

the android permission specification. In Proceedings of the 2012 ACM
Conference on Computer and Communications Security, CCS ’12, pages
217–228, New York, NY, USA, 2012. ACM.

[7] D. Barrera, J. Clark, D. McCarney, and P. C. van Oorschot. Under-
standing and improving app installation security mechanisms through
empirical analysis of android. In Proceedings of the Second ACM
Workshop on Security and Privacy in Smartphones and Mobile Devices,
SPSM ’12, pages 81–92, New York, NY, USA, 2012. ACM.

[8] S. Egelman, A. P. Felt, and D. Wagner. Choice architecture and
smartphone privacy: There’s a price for that. In In Workshop on the
Economics of Information Security (WEIS), 2012.

[9] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth. Taintdroid: An information-flow tracking system for
realtime privacy monitoring on smartphones. In Proceedings of the 9th
USENIX Conference on Operating Systems Design and Implementation,
OSDI’10, pages 393–407, Berkeley, CA, USA, 2010. USENIX Associ-
ation.

[10] P. Faruki, A. Bharmal, V. Laxmi, V. Ganmoor, M. S. Gaur, M. Conti, and
M. Rajarajan. Android security: a survey of issues, malware penetration,
and defenses. IEEE communications surveys & tutorials, 17(2):998–
1022, 2015.

[11] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. Android
permissions demystified. In Proceedings of the 18th ACM Conference
on Computer and Communications Security, CCS ’11, pages 627–638,
New York, NY, USA, 2011. ACM.

[12] X. Gao, D. Liu, H. Wang, and K. Sun. Pmdroid: Permission supervision
for android advertising. In 2015 IEEE 34th Symposium on Reliable
Distributed Systems (SRDS), pages 120–129, Sept 2015.

[13] M. C. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi. Unsafe exposure
analysis of mobile in-app advertisements. In Proceedings of the Fifth
ACM Conference on Security and Privacy in Wireless and Mobile
Networks, WISEC ’12, pages 101–112, New York, NY, USA, 2012.
ACM.

[14] D. E. Krutz, M. Mirakhorli, M. S. A., A. Ruiz, J. Peterson, A. Filipski,
and J. Smith. A dataset of open-source android applications. In Proceed-
ings of the 12th Working Conference on Mining Software Repositories.
ACM, 2015.

[15] M. Linares-Vsquez, K. Hossen, H. Dang, H. Kagdi, M. Gethers, and
D. Poshyvanyk. Triaging incoming change requests: Bug or commit
history, or code authorship? In 2012 28th IEEE International Conference
on Software Maintenance (ICSM), pages 451–460, Sept 2012.

[16] P. Manadhata and J. Wing. An attack surface metric. Software
Engineering, IEEE Transactions on, 37(3):371–386, May 2011.

[17] M. E. Nordberg. Managing code ownership. IEEE software, 20(2):26–
33, 2003.

[18] F. Rahman and P. Devanbu. Ownership, experience and defects: A fine-
grained study of authorship. In Proceedings of the 33rd International
Conference on Software Engineering, ICSE ’11, pages 491–500, New
York, NY, USA, 2011. ACM.

[19] E. A. Santos and A. Hindle. Judging a commit by its cover: Correlating
commit message entropy with build status on travis-ci. In Proceedings
of the 13th International Conference on Mining Software Repositories,
MSR ’16, pages 504–507, New York, NY, USA, 2016. ACM.

[20] J. Sellwood and J. Crampton. Sleeping android: The danger of dormant
permissions. In Proceedings of the Third ACM Workshop on Security
and Privacy in Smartphones & Mobile Devices, SPSM ’13, pages
55–66, New York, NY, USA, 2013. ACM.

[21] V. Sinha, A. Lazar, and B. Sharif. Analyzing developer sentiment in
commit logs. In Proceedings of the 13th International Conference on
Mining Software Repositories, MSR ’16, pages 520–523, New York,
NY, USA, 2016. ACM.

[22] R. Stevens, J. Ganz, V. Filkov, P. Devanbu, and H. Chen. Asking for
(and about) permissions used by android apps. In Mining Software
Repositories (MSR), 2013 10th IEEE Working Conference on, pages
31–40, 2013.

[23] J. Tsay, L. Dabbish, and J. Herbsleb. Let’s talk about it: Evaluating
contributions through discussion in github. In Proceedings of the 22Nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE 2014, pages 144–154, New York, NY, USA, 2014.
ACM.

[24] B. Vasilescu, K. Blincoe, Q. Xuan, C. Casalnuovo, D. Damian, P. De-
vanbu, and V. Filkov. The sky is not the limit: Multitasking across
github projects. In Proceedings of the 38th International Conference
on Software Engineering, ICSE ’16, pages 994–1005, New York, NY,
USA, 2016. ACM.

[25] M. Wei, X. Gong, and W. Wang. Claim what you need: A text-
mining approach on android permission request authorization. In Global
Communications Conference (GLOBECOM), 2015 IEEE, pages 1–6.
IEEE, 2015.

[26] Y. Zhauniarovich, M. Ahmad, O. Gadyatskaya, B. Crispo, and F. Mas-
sacci. Stadyna: Addressing the problem of dynamic code updates in the
security analysis of android applications. In Proceedings of the 5th ACM
Conference on Data and Application Security and Privacy, CODASPY
’15, pages 37–48, New York, NY, USA, 2015. ACM.

46169169

Author Preprint

