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Abstract Refactoring is the art of improving the inter-
nal structure of a program without altering its external
behavior, and it is an important task when it comes to
software maintainability. While existing studies have
focused on the detection of refactoring operations by
mining software repositories, little was done to under-
stand how developers document their refactoring ac-
tivities. Therefore, there is recent trend trying to detect
developers documentation of refactoring, by manually
analyzing their internal and external software docu-
mentation. However, these techniques are limited by
their manual process, which hinders their scalability.

Hence, in this study, we tackle the detection of refac-
toring documentation as binary classification problem.
We focus on the automatic detection of refactoring ac-
tivities in commit messages by relying on text-mining,
natural language preprocessing, and supervised ma-
chine learning techniques. We design our tool to over-
come the limitation of the manual process, previously
proposed by existing studies, through exploring the trans-
formation of commit messages into features that are
used to train various models. For our evaluation, we
use and compare five different binary classification al-
gorithms, and we test the effectiveness of these mod-
els using an existing dataset of manually curated mes-
sages that are known to be documenting refactoring ac-
tivities in the source code. The experiments are carried
out with different data sizes and number of bits. As per
our results, the combination of Chi-Squared with Bayes
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Point Machine (BPM) and Fisher Score with Bayes Point
Machine could be the most efficient when it comes to
automatically identifying refactoring text patterns in
commit messages, with an accuracy of 0.96, and an F-
Score of 0.96.

Keywords— machine learning, refactoring, software
quality.

1 Introduction

During the lifecycle of a software system, develop-
ers need to make some changes to the source code of
that system to facilitate its understandability and main-
tainability. To make that possible, they need to write
comprehensive code and refactor very often. The term
refactoring was first introduced by Opdyke in 1992 [30],
who defined it as a group of operations that improve
the structure of a system to make its evolution and de-
sign less complex and preserve its behavior.

A key factor when it comes to refactoring is that
only the internal structure of a program is modified
and its external behavior should stay the same. Some
examples of refactoring operations are: renaming, ex-
tracting or moving any source code element, and they
can be applied at different levels within the program;
for instance, at package, class or method level.

Previous studies found that the motivation behind
refactoring can be attributed to multiple reasons, e.g.
to simplify code readability and maintainability [27,
4], improve internal quality attributes of a system [10,
3,5], minimize code duplication [38], to address de-
fects [32], to avoid merge conflicts [35], to ease the code
review process [25], and to quickly get other develop-
ers on track with their projects after being absent for a
period of time [29].
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While automating the detection of refactoring oper-
ations, from the source code, has reached a high level of
accuracy [42], the need for close analysis of how devel-
opers document these refactoring activities. This can
reveal more insights on the developers intent behind
the application of these refactorings, which can sup-
port the on going research on refactoring automation.
Therefore, recent studies [13,2] have manually investi-
gated developers commit messages to extract a taxon-
omy on how developers actually document their refac-
toring activities. Refactoring documentation is coined
as Self-Admitted or Self-Affirmed refactoring. As an il-
lustrative example, we refer to the simplified example
extracted from the bekvon/residence project [1] (last
checked 2020/06/20) reported in Figure 1. The commit
message states the purpose of refactoring as a rename
of getter function for better readability. Based on the
developers commit message, can we automatically de-
duce the existence of a refactoring whose type is Re-
name Method. Documenting refactoring, similarly to any
type of code change documentation, is useful to de-
cipher the rationale behind any applied change, and
it can help future developers in various engineering
tasks, such as program comprehension, design reverse-
engineering, and debugging. However, the detection
of such refactoring documentation was hardly manual
and limited. There is a need for automating the detec-
tion of such documentation activities, with an accept-
able level of accuracy.

Fig. 1: An example of a refactoring, and its correspond-
ing documentation [1].

AlOmar et al. [2] presented a text-mining approach,
in which they collected and analyzed thousands of com-
mit messages from a dataset containing more than 400,000
commit messages from several open-source Java projects,
generated using RefactoringMiner [42], a state-of-the-
art refactoring detection tool, capable of identifying 38
refactoring types.

Further, they proposed the concept of Self-Affirmed
Refactoring (SAR) patterns, which are text keywords
that developers use to describe their refactoring activ-
ities in commit messages. They were able to identify
around 87 SAR patterns, such as: “use better name”,
“move method”, ”core remodularization”, “code cleanup”,
“minor simplification”, etc. Nevertheless, they carried
out the SAR identification manually, which is time-consuming,
and subjective. This problem seems to be solvable us-
ing a simple string matching approach, however, recent
studies have shown that developers misuse refactor-
ing keywords, and therefore, a naive keyword match-
ing will trigger a potential number of false positives.
To address this challenge, we aim to design a solution
that uses supervised learning to learn the context of the
keywords, when properly used in the context of refac-
toring, and so accurately identifies these patterns, in an
automatic way.

1.1 Research Goal

Therefore, we also propose a text-mining approach
to automatically detect refactoring activities in commit
messages by searching for a list of SAR patterns, i.e. if a
commit message contains one of the SAR patterns, it is
considered as ”refactoring”, otherwise as ”non-refactoring”.
So, to conduct our study, we first extract 3,000 commit
messages from the same dataset used in [2], to prepare
a set of commit messages, which some are tagged as
containing refactoring patterns (i.e., SAR) and those
who do not. Next, we preprocess the content of the com-
mit messages and build our refactoring classification
model using the Feature Hashing technique to trans-
form our data into numbers so that the used machine
learning algorithms can operate on them.

To better learn the context of the keywords, we ex-
plore different feature selection methods, such as Chi-
Squared (CHI) and Fisher Score (FS). These feature se-
lections techniques were used to extract the learning
knowledge for five different two-class machine learn-
ing algorithms, namely: Bayes Point Machine (BPM),
Neural Network (NN), Logistic Regression (LR), Boosted
Decision Tree (BDT), and Averaged Perceptron (AP),
part of the Azure Machine Learning environment. Af-
ter that, we evaluate and compare the results and dis-
cuss what combination of algorithms performs better
in predicting SAR patterns or refactoring activities from
commit messages.

1.2 Innovation highlights
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After obtaining the results, we could observe that
the accuracy of our classifier tends to be higher when
filtering the features than when using all of them. In
addition, we also tried using a different data transfor-
mation technique, called Latent Dirichlet Transforma-
tion or LDA, using the same dataset, and scoring method
as well as machine learning algorithm but based on our
results Feature Hashing gives higher accuracy and F-
Score.

In this study, we were able to obtain an accuracy of
up to 0.97 by using a combination of Feature Hashing
as our data transformation technique, plus Chi-Squared
as feature selection method and Bayes Point Machine
(BPM) as the machine learning model.

We understand that recognizing refactoring paths
in a software project relying only on commit messages
can be a very challenging and a complex task due to
a large amount of refactoring types, and the way de-
velopers document their refactoring-related changes.
Yet; this solution can be used as a complementary tech-
nique to existing refactoring detection tools, as well as a
quick solution for personal projects to effectively iden-
tify refactoring activities with minimal manual effort.
Also, we would like to motivate other researchers to
build on this approach and collect more refactoring key-
words or SAR patterns.
– Testing various features selection techniques with

various binary classifiers, for the problem of detect-
ing refactoring documentation (Section 3.3).

– A new dataset of detected refactoring textual pat-
terns (Table 3).

– A replication package of our work is publicly avail-
able for researchers and practitioners to replicate
and extend1.
This paper is structured as follows: Section 2 talks

about existing refactoring detection tools and their ad-
vantages and disadvantages. Section 3 provides infor-
mation about the technology used and the steps involved
to carry out this study. Section 4 discusses the results
and presents the answers to our research questions. Sec-
tion 5 indicates the research implications of our model.
Section 6 discusses the model limitations while Sec-
tion 7 captures any threats to our study validity. and in
Section 8 this paper comes to its end.

2 Related Work

Due to the importance of refactoring in a software
system, a number of tools have been built to make its
detection possible based on different methodologies,

1 https://drive.google.com/drive/folders/1h-
ek4lc3O2XLCdDTQpMQjos5MM7uECif?usp=sharing

namely, rules, metrics, graph matching, search and dy-
namic analysis. Details of some of the most relevant
studies are provided in the following subsections.

Rule/heuristic-based technique
Tsantalis et al. [42] proposed RrefactoringMiner, also

known as RMiner, an open-source tool with the poten-
tial of identifying 38 refactoring patterns at multiple
granularity levels: package, type, method, considering
only potential refactoring-data such as deleted, added
and changed files. It is based on AST (Abstract Syntax
Tree) statement matching algorithm, and predefined
refactoring rules with no need for similarity threshold.
Taneja et al. [39] created RefactLib, which analyzes two
different versions of an Application Programming In-
terface (API) and detects and extracts refactoring in-
stances depending on their textual similarity, the simi-
larities, and size of the entities, and information regard-
ing obsolete entities by using a set of change-metrics
and syntactic analysis. Moreover, Weissgerber [44] pre-
sented an algorithm focused on detecting refactorings
at different levels, to detect refactoring applied between
two versions of a software system by parsing deltas and
comparing entities based on their names and bodies
similarities.

Xing and Strolia [45] created UMLDiff, to automat-
ically detect changes in the structure of the design of
subsequent versions of an object-oriented software sys-
tem and capable of tracking changes among different
classes with a focus on the interface level. Dig et al. [14]
developed an Eclipse plugin, RefactoringCrawler, which
can find seven high-level refactoring types from Java
projects by creating a tree of a program in which each
node of the tree is the representation of a source code
entity (package, class, method, field), and using Shin-
gle algorithm to find similarity between entities under
evaluation.

Moreover, Kim et al. [22] build Ref-finder that works
within the Eclipse IDE, which can detect 63 refactoring
types. It takes two program versions as input, and de-
compose them as a database of logic facts and identifies
refactorings via logic queries. Silva and Valente [35]
came up with RefDiff, a tool that can detect 13 different
refactoring types in Version Histories of Java programs
based on static analysis and code similarity.

Metric-based
Demeyer et al. [12] tried to identify refactoring ac-

tivities by using change metrics between two subse-
quent software releases of three general categories: method
size, class size, and inheritance computed for each class.
Chidamber et al. [11] proposed a suite of class-level
metrics namely CK-metrics, in honor of the initial let-
ter of their last names, to find refactorings in object-
oriented programs. Mahouachi et al. [24] were able to
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identify refactorings by combining software metrics and
using a search-based process to reduce the difference in
metrics.

Graph-matching based
Soetens et al. [37] implemented a tool to identify

floss refactorings of renamed and moved methods by
matching operation histories. Kehrer et al. [21] presented
a tool able to identify complex differences from two
versions of a software system using graph transforma-
tion rules, representing their operations to match them
between the versions.

Search-based
Some other studies have shown that it is possible to

detect refactorings in a software system by represent-
ing the structural changes between two of its versions
as a graph search; for instance, Hayashi et al. [17], used
two commit messages (previous and revised commits)
as versions of a program to search paths between them.
Thangthumachit et al. [40] detected refactoring opera-
tions at different levels of a program based on the simi-
larity of its source code elements including refactoring
types such as rename, move and extract.

Dynamic analysis-based
The objective of this technique is to analyze the be-

havior of a system after any modification through test
cases and if the behavior was not the same, the change
was not refactoring otherwise it was. For instance, SafeR-
efactor [36] generates unit tests to analyze the behav-
ior of a system by comparing an original version and a
modified one.

However, most of those previous studies rely on sim-
ilarity thresholds and are only intended to be used on a
specific programming language, mainly on Java projects.
Additionally, most of those tools have to go through in-
finite loops to understand the design of a system; and
therefore, demand large computational time, so in that
case, performance becomes a concern. Additionally, it
might be significantly hard to use them in real-world
scenarios, particularly the ones that require much more
semantic information on the source code, such as pro-
gram dependency graphs, class models, meta-models
or control flow graphs, which is very hard if not impos-
sible to obtain in many languages (such as JavaScript or
C), or when considering only program fragments (e.g.,
plug-ins).

Some additional studies have contemplated the size
of commit messages as their main and only element to
detect refactorings, like Hindle et al. [19], but it was
later discussed by Hattori et al. [16] who indicated that
the results of the previous study can be very ambigu-
ous since there is not a consistent definition of what a
large or small commit is.

Nevertheless, previous studies have shown that it
is possible to detect refactorings by merely analyzing
the commit messages since there are some words and
phrases that specify refactoring operations (self-affirmed
refactoring). For instance, Stroggylos et al. [38], iden-
tified refactorings from the source code version logs of
different projects by searching for the word stemming
from ”refactor”.

Further, AlOmar et al. [2] came up with a text mining-
based study, in which they extracted refactoring com-
mit messages by RMiner [42], and manually analyzed
them to find patterns that developers use to indicate
their refactoring-related changes. In their work, they
came up with a list of keywords and phrases that could
be very helpful to detect refactorings.

Despite some limitations that commit messages present
due to the way developers document their activities,
we believe that the study by AlOmar et al. [2] can be
very useful when it comes to identifying refactorings
in a general way as it can be applied to different pro-
gramming languages and can be used as a complement
to other approaches.

Thus, to overcome their limitations, as they performed
a manual process, labor-intensive, time-consuming and
error-prone, we propose an automatic way of identi-
fying refactoring activities or SAR from commit mes-
sages by using Natural Language Processing (NLP),
and training machine learning algorithms using a dataset
containing the refactoring keywords that they suggest.

3 Methodology

In a nutshell, the goal of our work is to automat-
ically identify then classify commit messages contain-
ing refactoring documentation, i.e., Self-Affirmed Refac-
toring. Our proposed framework can be seen in Figure
2, consisting of four main parts. In the first one, the data
is prepared and the content of the commit messages
is preprocessed to remove unnecessary and irrelevant
information for the classification and to normalize the
data. Whereas, in the second one, the data is converted
into hash values, in which each of them represents one
of more features in the commit messages. Moreover,
in the third part, the features are filtered to only se-
lect the most important ones from the dataset, depend-
ing on the indicated number of desired features, and
in the fourth part, the machine learning algorithms are
trained and tested based on the selected features. The
resulting two-class classifier is able to operate over un-
labeled texts.

Figure 3, shows a general overview of our experi-
mental procedure. It can be seen that it consists of five
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Fig. 2: Our framework for the detection of refactoring documentation.

main stages, i.e., (1) data preparation and text prepro-
cessing, (2) feature generation, (3) feature selection,
(4) training two-class refactoring classifier using dif-
ferent machine learning algorithms, and (5) evaluating
and comparing the performances of the algorithms.

In this section, we provide details about the tech-
nology that we used, our data collection, and informa-
tion with respect to all the methodologies applied in
our work to build our machine learning solutions for
refactoring classification and that would help us to an-
swer our research questions. Further, we also talk about
our experimental setup.

3.1 Data Collection

The dataset utilized in this study contains 1,208,970
refactoring operations, originally extracted by using Refac-
toringMiner [42], a state-of-the-art refactoring detec-
tion tool, from 3,795 open-source Java projects. This dataset
is the same one used by AlOmar et al. [2], of which they
analyzed 58,131 out of a total of 433,833 commit mes-
sages in the dataset, across 3,795 projects. Moreover, we
took their list of SAR patterns to create our refactoring
dataset, which can be seen in Table 1, and we also made
some modifications to a few SAR patterns to obtain a
higher number of refactoring operations indicated in
commit messages. In Table 2 those modifications are
shown.

Once we had collected the SAR patterns, we pro-
ceeded to manually extract 1,500 commit messages con-
taining those patterns and 1,500 not containing SAR
patterns using MySQL queries. Then, we manually la-
beled a total of 3,000 commit messages into two differ-
ent categories; for instance, ’0’ for non-refactorings and
’1’ for refactorings. Next, we performed manual inspec-
tion of the labeled data to avoid adding false positives

to our model. Therefore, if there was a commit mes-
sage with the word ”re-factoring” in the group of non-
refactoring messages, we deleted that instance and did
not consider it as part of that group.

During the manual classification of commit mes-
sages, we encountered some other patterns that devel-
opers use to indicate their refactoring-related activities.
We understand that the more SAR patterns we pass to
our model, the more it will learn and the higher the
resulting recall for our solution will be. Therefore, in
Table 3 we can see those new SAR patterns.

After all, we ended up incorporating all the SAR
patterns, including the ones that we found, to our fi-
nal set of refactoring commit messages, with another
group of non-refactoring commit messages, which do
not contain any of those SAR patterns.

3.2 Data Preparation and Text Preprocessing.

To prepare our data, we first detected the languages
in the commit messages and split the dataset into two
groups, one containing only English words and another
one with words in different languages. For our study,
we selected the English group since that is our target
language.

Further, we preprocessed the content of the commit
messages to normalize the data, and remove irrelevant
words to boost the performance of our classifier, similar
to [4]. This process involved the following steps:

– Tokenization: The goal of tokenization is to investi-
gate the words in a sentence. The tokenization pro-
cess breaks a stream of text into words, phrases, sym-
bols, or other meaningful elements called tokens [23].
In our work, we tokenize each commit by splitting
the text into its constituent set of words. We also
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Fig. 3: Experimental procedure on comparing different Feature Hashing bitsize, scoring methods, numbers of
desired features, and machine learning algorithms.

split tokens on special characters (e.g., the string ”package-
level” would be separated into two tokens, ”pack-
age” and ”level”).

– Lemmatization: The lemmatization process either
replaces the suffix of a word with a different one or
removes the suffix of a word to get the basic word
form (lemma). By lemmatizing the words, we ob-
tained the base or canonical form of the verbs pre-
sented in the commit messages. For instance, the
terms “cleaned, cleaning” would be changed to “clean”,
and the terms “is, are, were” would be changed to
“be”, and so on.

– Stop-Word Removal: Stop words (i.e., words and
common English words such as ”is”, ”are”, ”if”, etc)
are removed since they do not play any role as fea-
tures for the classifier [33].

– Case Normalization: Since text could have a diver-
sity of capitalization to form a sentence and this could
be problematic when classifying large commits, all
the words in the commit messages are converted to
lower case and all verb contractions are expanded.

– Noise Removal: Special characters and numbers are
removed since they can deteriorate the classifica-
tion. More specifically, we remove all numeric char-
acters, unique and duplicate special characters, email
addresses and URLs.

After preprocessing the commit messages, we man-
ually verified that the text had been correctly prepro-
cessed by randomly selecting some of them from our
corpus, and we also validated to have 1,500 refactoring
instances and 1,500 of non-refactoring.

3.3 Feature Extraction Using Feature Hashing

Since the machine learning algorithms cannot di-
rectly identify text, the data was converted into hashes
based on the terms. Hence, given a bag-of-words (BOW)
in different commit messages, the machine learning al-
gorithms are expected to learn features to predict the
output. The features that the algorithms used to train
and predict in this study are derived using the Fea-
ture Hashing technique, also known as hashing trick,
in which various words with varying word length are
mapped to different features based on their hash val-
ues.
– Feature Hashing (FH): This is a technique that op-

erates on high-dimensional text documents used as
input in a machine learning model, to map string
values directly into encoded features and represent
them as integers [(Shi et al. [34], Weinberger et al. [43]].
This technique helps to reduce dimensionality and
to make the feature weights lookup more efficient.
In order to execute Feature Hashing, we need to spec-
ify the target column(s) that will be transformed
and those columns need to be string data type, we
also need to specify the number of bits o bitsize,
to indicate the number of features to be generated,
and the number of N-gram terms or sequence of n
words treated as a unique unit.
Furthermore, Feature Hashing uses a fast learning
machine framework, namely: Vowpal Wabbit, which
in turn uses Murmurhash3, a non-cryptographic and
open-source hash function created by Austin Ap-
pleby. Some previous papers indicate how good the
performance of Murmurhash3 is, particularly in [31].
That is a 32-bit algorithm and it determines the num-
ber of features to be created based on the following
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Table 1: Original list of Self-Affirmed Refactoring
(SAR) patterns

(1) Add* (51) Fix technical debt
(2) Fix* (52) Use a safer method
(3) Mov* (53) Getting code out of
(4) Merg* (54) Naming improvements
(5) Chang* (55) Simplify the design
(6) Creat* (56) Enhanced code beauty
(7) Inlin* (57) Fix module structure
(8) Reduc* (58) Improve code quality
(9) Remov* (59) Minor simplification
(10) Renam* (60) More easily extended
(11) Split* (61) Pull up some code up
(12) Cleanup (62) Replace it with word
(13) Enhanc* (63) Many cosmetic changes
(14) Extend* (64) Modularize this class
(15) Improv* (65) Move unused file away
(16) Modify* (66) Remove redundant code
(17) Replac* (67) Avoid future confusion
(18) Rework* (68) Get rid of unused code
(19) Rewrit* (69) Moved more code out of
(20) Extract* (70) Make maintenance easier
(21) Decompos* (71) Removing unused classes
(22) Introduc* (72) Renamed for consistency
(23) Redesign* (73) Change package structure
(24) Refactor* (74) Fixing naming convention
(25) Reformat* (75) Major structural changes
(26) Simplify* (76) Minor structural changes
(27) Nicer code (77) Clean up unnecessary code
(28) Reorganiz* (78) Improve naming consistency
(29) Encapsulat* (79) Nonfunctional code cleanup
(30) Restructur* (80) Refactor bad designed code
(31) Code cleanup (81) Simplify code redundancies
(32) Change design (82) Deleting a lot of old stuff
(33) Code revision (83) Inlined unnecessary classes
(34) Use less code (84) Removed poor coding prac-
(35) Code cleansing tice
(36) Code cosmetics (85) Reorganize project structu-
(37) Fix code smell res
(38) Polishing code (86) Code reformatting
(39) Code reordering (87) Moved and gave clearer na-
(40) Nicer formatted mes to
(41) Nicer Structure (88) Antipattern bad for perfor-
(42) Use better name mances
(43) Code improvements (89) Code maintenance for refac-
(44) Code optimization toring
(45) Fix a design flaw (90) Added more checks for qua-
(46) Fix quality flaws lity factors
(47) Fix quality issue (91) Refactoring towards nicer
(48) Minor enhancement name analysis
(49) Remove dependency
(50) Simplify the code

formula: (2ˆk)-1, being k the number of bits, so, if
we specify a bitsize of 10, then (2ˆ10)-1 = 1,023. So,
the resulting number indicates the number of fea-
tures to be generated after executing Feature Hash-
ing. It is recommended to increase the number of
bitsize depending on the size of N-grams vocabu-

Table 2: List of modified SAR patterns
(1) Modif* (15) Fix* quality flaw
(2) Simplif* (16) Remov* dependency
(3) Polish* code (17) Code improvement*
(4) Chang* design (18) Fix* quality issue
(5) Us* less code (19) Renam* consistency
(6) Simplif* code (20) Reorganiz* structure
(7) Pull* some code (21) Fix* technical debt
(8) Us* better name (22) Remov* unused classes
(9) Code cosmetic* (23) Remov* redundant code
(10) Delet* old stuff (24) Improv* code quality
(11) Simplif* design (25) Mov* more code out of
(12) Fix* code smell (26) Fix* naming convention
(13) Nam* improvement (27) Chang* package structure
(14) Modulariz* class (28) Improv* naming

Table 3: List of new SAR patterns
(1) Typo (15) Formatted
(2) Tidy* (16) Cleaned up
(3) Spell* code (17) Code clean
(4) Tidied (18) Get rid of
(5) Polish* (19) Getting rid of
(6) Clarif* (20) Meaningful
(7) Separat* (21) Modulariz*
(8) Optimiz* (22) Pulled out
(9) Organiz* (23) Cleaning up
(10) Clean-up (24) Better name
(11) Pull out (25) Pulling out
(12) Structur* (26) New structure
(13) Correct* (27) Duplicate code
(14) Normaliz*

lary that will be used to train the model to avoid
collisions; currently, the maximum number for bit-
size that it can accept is 31; for instance, (2ˆ31)-1.
Each hash value represents one or more N-gram

features, depending on the specified number of bits,
also called bitsize. When working with a large dataset,
it is recommended to increase the number of bits to
avoid data collision and have one hash value represent-
ing only one N-gram feature. Consequently, for us to
know what could be a good bitsize to train our model,
we first preprocessed our data and defined the N-gram
as bigram since this one can contain more domain-specific
semantic content than a singular word. Next, we counted
the number of unique bigram terms in our preprocessed
data to have an idea of how many features our dictio-
nary of bigram terms contained.

Considering that the number of unique bigram terms
in our preprocessed dataset was 16,897, we tried differ-
ent number of bits based on that, for example, (1) 13,
generating a total of 8,191 features, (2) 14, which gen-
erates a total of 16,383 features, and (3) 15, for the cre-
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ation of 32,767 features. We then obtained the results
after applying different numbers of bits to evaluate and
compare the effectiveness of our model.
– Feature Selection: After obtaining a group of bi-

gram terms as features, it is convenient to select only
the predominant ones based on their frequency im-
portance of words, i.e. good-candidate features, to
reduce the dimensionality of the original feature space,
and possibly improve the classification efficiency.
Thus, to identify those bigram key terms with the
greatest predictive power to train machine learning
algorithms, and remove redundant features from
our model, we tried two different feature selection
methods, namely: Chi-Square (CHI) and Fisher Score
(FS), which rely on statistical or information-theoretical
measures.

– Chi-Squared (CHI): A commonly used statistic to
analyze categorical data with more than one vari-
able. This statistical method gives a score to each at-
tribute of the dataset to then determine its relevance
and correlation with the class [46]. The resulting as-
signed score is an indicator of how far observed at-
tributes are from expected random attributes. So, in
other words, it measures the lack of independence
between a variable and a category.

– Fisher Score (FS): With this mechanism, a subset
of features is selected to score the distance between
them. Features in different classes should be as large
as possible, whereas the distance between features
from the same class should be as small as possible.
This method also combines features to remove re-
dundant ones.
We compared the performance of our machine learn-

ing model by trying different feature set sizes: (1) 800,
(2) 1,000, (3) 1,500, and (4) 2,000, to further evaluate
the performance of the algorithms using those fixed set
of features. In addition, we also tried using all the fea-
tures generated by the Feature Hashing technique to
compare the results when using all the features or fil-
tering them by using any scoring method.

3.4 Model Training & Building

To train and test the two-class machine learning al-
gorithms contemplated in this study, we used a strati-
fied train-test split methodology to divide the rows of
the transformed dataset from the selected features into
two different sets: 70% for training purposes while the
remaining data 30% was used to measure its error rate.

Additionally, as we mentioned before, to improve
the accuracy of our model, we increased the number

of feature creation or “bitsize” to avoid data collision
when adding more new data, and we also tried dif-
ferent scoring methods, e.g. Chi-Squared, and Fisher
Score from the Azure ML environment, and different
feature set sizes.

3.5 Classifier Selection & Evaluation

Below is a brief description of each of the classifica-
tion algorithms used in this study.
– Bayes Point Machine (BPM): A linear classifier based

on the Bayesian approach, originally proposed by
Herbrich et al. [18]. This algorithm is a generative
classifier, which means that it tries to understand
the differences between the classes to further be able
to classify them and even generate them. Moreover,
it focuses on finding and returning the average of
all the possible good decision straight-line bound-
aries between two classes and returns the average
classifier in kernel space, which approximates the
Bayesian classification strategy.

– Averaged Perceptron (AP): A supervised machine
learning algorithm created by Frank Rosenblatt. Sim-
ilar to Bayes Point Machine, it is also a linear classi-
fier, i.e. it takes advantage of linearly separated data
with large margins [15]. The name of ”Perceptron”
is because it combines a set of weights with the fea-
ture vector.

– Logistic Regression (LR): A linear statistical tech-
nique that uses a logistic function as its core to trans-
form probability predictions into binary values, in
other words, each feature in the dataset will be as-
signed a probability between 0 and 1. Contrary to
Bayes Point Machine, this one is a discriminative
classifier; thus, it only tries to understand whether
any attribute belongs to a specific class without learn-
ing much in detail about it.

– Boosted Decision Tree (BDT): An ensemble learn-
ing technique that combines several weak learners,
i.e. trees containing a set of input features, into stronger
classifiers, then the predictions are based on that
group of trees. Additionally, trees are generated it-
eratively, and a weight is assigned to the output of
each tree, regarding its accuracy [20].

– Neural Network (NN): A set of interconnected lay-
ers of nodes, designed to recognize patterns and
underlying relationships in an input set of data sim-
ilar to the way the human brain works; e.g. learning
to perform some tasks by examining training exam-
ples or historical data, which need to be previously
labeled. In this type of algorithm, the data moves
through the nodes in only one direction, and each
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node will assign a weight to every different incom-
ing item.

After training and testing the models, the effective-
ness of each combination of algorithms is then eval-
uated based on the accuracy, precision, recall and er-
ror rate. A higher accuracy indicates that our refactor-
ing classifier is able to correctly predict commit mes-
sages as refactoring or not. Moreover, precision refers
to how many commit messages predicted as refactor-
ing were valid refactoring, while recall shows how of-
ten those refactoring messages were captured by the
model. Thus, the higher the recall, the more refactoring
elements can be identified and the higher the precision,
the more predictions are correct. We used the Formula
4 and 3 to obtain the accuracy and the F-Score, while
Formula 1 for the precision, and Formula 2 for the re-
call of our model.

On the other hand, if the test set presents a high er-
ror rate and a low error rate in the training set, it is an
indication of high variance as the model failed to cor-
rectly classify new commit messages, but if both train-
ing and test sets show a high error rate, that is high
bias.

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F − Score = 2 ∗
Precision ∗ Recall
Precision + Recall

(3)

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

For this study, we used a PC operating on Windows
10 (64-bit), with Intel(R) Core(™) i7-3630QM CPU, and
8GB RAM. However, we used Azure Machine Learning
Azure Machine Learning Studio [28], a cloud-based
tool, and Google Chrome as our browser, to conduct
the experiments and to build, train, test, and evaluate
our models with the previously mentioned algorithms,
and further deployed a predictive experiment with the
combination of algorithms with the highest accuracy..

Table 4: Performance of different classifiers (Binary
Classification).

Classifier Precision Recall Accuracy F-score

Chi-Squared - Bitsize : 13
Bayes Point Machine 0.93 0.95 0.94 0.94
Averaged Perceptron Method 0.93 0.91 0.92 0.92
Logistic Regression 0.95 0.83 0.90 0.89
Gradient Boosted Machine 0.93 0.90 0.91 0.91
Neural Network 0.96 0.84 0.90 0.89

Chi-Squared - Bitsize : 14
Bayes Point Machine 0.95 0.96 0.96 0.96
Averaged Perceptron Method 0.97 0.91 0.94 0.94
Logistic Regression 0.96 0.84 0.90 0.90
Gradient Boosted Machine 0.93 0.89 0.91 0.91
Neural Network 0.97 0.86 0.91 0.91

Chi-Squared - Bitsize : 15
Bayes Point Machine 0.96 0.96 0.96 0.96
Averaged Perceptron Method 0.98 0.93 0.96 0.96
Logistic Regression 0.97 0.84 0.91 0.90
Gradient Boosted Machine 0.94 0.90 0.92 0.92
Neural Network 0.98 0.90 0.94 0.94

Fisher score - Bitsize : 13
Bayes Point Machine 0.93 0.95 0.94 0.94
Averaged Perceptron Method 0.94 0.92 0.93 0.93
Logistic Regression 0.95 0.94 0.90 0.89
Gradient Boosted Machine 0.94 0.89 0.92 0.91
Neural Network 0.97 0.83 0.90 0.89

Fisher score - Bitsize : 14
Bayes Point Machine 0.95 0.96 0.95 0.95
Averaged Perceptron Method 0.96 0.91 0.94 0.94
Logistic Regression 0.96 0.84 0.90 0.90
Gradient Boosted Machine 0.94 0.90 0.92 0.92
Neural Network 0.94 0.91 0.93 0.93

Fisher score - Bitsize : 15
Bayes Point Machine 0.96 0.96 0.96 0.96
Averaged Perceptron Method 0.97 0.92 0.95 0.95
Logistic Regression 0.97 0.85 0.91 0.90
Gradient Boosted Machine 0.94 0.90 0.92 0.92
Neural Network 0.98 0.89 0.93 0.93

4 Results & Discussion

Our experiments are driven by the following research
questions:

RQ1: How effective is our approach in identifying
self-affirmed refactoring (SAR) patterns for refac-
toring activities from commit messages compared
to the baseline [1]?
RQ2: What combination of machine learning tech-
niques and algorithms, from the ones contemplated
in our framework, gives the highest accuracy pre-
dicting SAR patterns in commit messages?
RQ3: What is the impact of applying Feature Hash-
ing in our SAR classification solution instead of any
other data transformation technique?
A total of 3,000 labeled commit messages were used

as our dataset in Azure ML, of which 50% contain SAR
patterns, while the remaining 50% do not.

A comparison between classification algorithms is
reported in Table 4. The accuracy curves of the contem-
plated machine learning algorithms using Fisher Score
as scoring method and different numbers of desired
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(a) Accuracy curves using a bitsize of 13 and Fisher
Score (b) Accuracy curves using a bitsize of 13 and

Chi-Squared
Fig. 4: Accuracy using Fisher Score and Chi-Squared, Bitsize:13

(a) Accuracy curves using a bitsize of 14 and Fisher
Score

(b) Accuracy curves using a bitsize of 14 and
Chi-Squared

Fig. 5: Accuracy using Fisher Score and Chi-Squared, Bitsize:14

(a) Accuracy curves using a bitsize of 15 and Fisher
Score

(b) Accuracy curves using a bitsize of 15 and
Chi-Squared

Fig. 6: Accuracy using Fisher Score and Chi-Squared, Bitsize:15

features are shown in Figure 4a (with a bitsize of 13),
in Figure 5a (with a bitsize of 14), and Figure 6a (with
a bitsize of 15). On the other hand, the accuracy curves
using Chi-Squared can be seen in Figure 4b (using a
bitsize of 13), in Figure 5b (with a bitsize of 14), and
in Figure 6b (with a bitsize of 15). In addition, we also
obtained the accuracy curves using different number
of bits without any scoring method and the results are
shown in Figure 8.

Moreover, to simplify the presentation of our results,
we decided to show the F-Score, which is the weighted
average of precision and recall, which range is between

0 and 1, being ’1’ the ideal value, instead of showing the
results of both metrics: recall and precision. Therefore,
the F-Scores of the used machine learning algorithms
and using Fisher Score as scoring method can be seen
in Figure 9a (with a bitsize of 13), Figure 10a (with a
bitsize of 14) and Figure 11a (with a bitsize of 15).

Further, we also present the F-scores obtained after
using Chi-Squared as our scoring method; this Figure
9b shows the results with a bitsize of 13, Figure 10b dis-
plays the results using a bitsize of 14, and Figure 11b
presents the results using a bitsize of 15. Subsequently,
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Fig. 7: Example of refactoring commit message that confused the classifiers.

Fig. 8: Accuracy Curves using all the features
with no scoring method

the F-scores using different number of bits and without
filtering the features is presented in Figure 12.

According to our results, we can infer that the com-
bination of using Bayes Point Machine with a bitsize of
15 and filtering out the data by 2,000 using Chi-Squared
and Fisher Score gives the highest accuracy to our so-
lution.

Given those results, we can draw a conclusion that
in terms of refactoring classification accuracy, the rank-
ing of the five machine learning algorithms that we used
is as follows:BPM>AP>NN>BDT>LR.

To better understand the cases in which our classi-
fiers are not performing well, Figures 7 shows one case
of a commit message that confused the classifiers when
performing two-class classifications. The commit mes-
sage contains a pattern (i.e., changing package name)
that is a synonym of the patterns ”renam*” or ”use bet-
ter name”.

4.1 RQ1: How effective is our approach in identifying
self-affirmed refactoring (SAR) patterns from commit
messages compared to the baseline [2]?

Our resulting machine learning classifier is capa-
ble of identifying thousands of refactoring activities in
commit messages in an automatic way with less human

effort and in less time than the one by AlOmar et al. [2],
who took around 7 days to identify some SAR patterns
in thousands of commit messages.

4.2 RQ2: What combination of machine learning
techniques and algorithms, from the ones
contemplated in our framework, gives better accuracy
and precision when predicting SAR patterns from
commit messages?

We were able to obtain the highest accuracy by com-
bining Feature Hashing technique with a bitsize of 15,
Chi-Squared or Fisher Score as the scoring method, with
a number of 2,000 desired features and Bayes Point Ma-
chine as the machine learning model, giving an accu-
racy of 0.96.

4.3 RQ3: What is the impact of applying Feature
Hashing in our SAR classification solution instead of
any other data transformation technique?

To answer this question, we tried using a different
data transformation technique called Latent Dirichlet
Allocation or LDA, using Chi-Squared as scoring method
and Bayes Point Machine as machine learning algorithm.
According to the obtained accuracy scores, Feature Hash-
ing performs better on this type of solution with an ac-
curacy of 0.96 (using the combination with the highest
combination of algorithms), while the accuracy using
LDA was of 0.67.

5 Research Implications

Our framework is useful to the refactoring commu-
nity in particular and software engineering in general.
Detecting refactoring documentation reveals develop-
ers strategies in handling and reducing technical debt
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(a) F-Score using a bitsize of 13 and Fisher Score (b) F-Score using a bitsize of 13 and Chi-Squared
Fig. 9: F-Score using Fisher Score and Chi-Squared, Bitsize:13

(a) F-Score using a bitsize of 14 and Fisher Score (b) F-Score using a bitsize of 14 and Chi-Squared
Fig. 10: F-Score using Fisher Score and Chi-Squared, Bitsize:14

(a) F-Score using a bitsize of 15 and Fisher Score (b) F-Score using a bitsize of 15 and Chi-Squared
Fig. 11: F-Score using Fisher Score and Chi-Squared, Bitsize:15

Fig. 12: F-Score using all the features with no
scoring method

in their design and source code. Several studies have
provided techniques to manage technical debt [41,8],

or improving the design structural measurements [26,
9]. But, there is no association of these suggested refac-
torings with any context, which makes them discon-
nected from what developers are in the middle of han-
dling. Detecting textual description of refactoring, once
associated with the detection of refactorings, will infer
the rationale behind the refactoring application.

As we observe the output of our model, we have no-
ticed that developers tend to add a high-level descrip-
tion of their refactoring activity, and occasionally men-
tion their intention behind refactoring (remove dupli-
cate code, improve readability, etc.), along with men-
tioning the refactoring operations they apply (type mi-
gration, inline methods, etc.).
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Fig. 13: Sample of patterns identified by automatic classification.

Such information is valuable for researchers and prac-
titioners, as it extracts common refactoring textual pat-
terns, revealing what developers actually care about,
and so, it tunes existing research toward designing tools
that are most likely to be accepted by developers. For
instance, we have noticed that developers explicitly state
several refactorings as part of them migrating APIs [7].
yet, there is no refactoring tool that supports such del-
icate operation, which requires removing all methods
from one third-party library, and replacing them with
methods from another library [6].

Another interesting finding that we report is the mis-
use of developers for some refactoring keywords, which
can potentially hinder the accuracy of our model. Also,
as developers typically focus on describing their func-
tional updates and bug patches, refactoring could be
present in these scenarios but without being explicitly
mentioned. Moreover, there is no standard or guide-
lines related to formal refactoring documentation. This
makes the documentation process subjective and de-
veloper specific. The fine-grained description of refac-
toring can be time consuming, as typical description
should contain indication about the operations performed,
refactored code elements, and a hint about the inten-
tion behind the refactoring.

Refactoring documentation is a pure reflection the
developer’s understanding of what has been improved
in the source code, which can be different in reality, as
the developer may not necessarily adequately estimate

the refactoring impact on the quality improvement. In
this context, our model helps with capturing refactor-
ing intents, which can allow code review to verify its
correctness.

6 Limitation

Our work is currently considered commit messages
that are extracted from open source Java projects. We
have not explored how our approach behaves across
different programming languages. Thus, our future work
will focus on building a model that works well across
languages as developers might have different ways to
document refactorings for each programming language.
Another limitation of the study is related to the feature
set size. We have evaluated the model using only four
feature sizes. As feature size might have an impact on
the performance of the model, we plan to try more fea-
ture sizes and evaluate the performance of the model.
Moreover, our results do not show which exact source
code elements were refactored, or how many refactor-
ing operations were performed.

Another intuitive limitation of our work concerns
the ambiguity that eventually may exist in commit mes-
sages. In other terms, if the committer does not prop-
erly describe the code changes, it would be hard for us
to properly identify the corresponding code changes
we are looking for. This limitation does not only apply
to our study, but to any study which relies on analyz-



14 Licelot Marmolejos et al.

ing natural language to decipher and understand their
corresponding code changes. Eventually, our approach
may be useful in the context of checking the consis-
tency between good changes and documentation. In
other terms, it is possible to use our model as a Sat-
urday check together the code changes were properly
described in a way that an automated model can iden-
tify the existence of refactoring operations.

7 Threats to Validity

Internal validity. The evaluation oracle that we used
can be related to human errors since we performed a
manual task to label the commit messages for train-
ing purposes. Nonetheless, to address that issue, we
inspected all the commit messages to validate that they
were correctly labeled before executing our experiments.

Since our framework relies on commit messages, we
used well-engineered Java projects that are most likely
to be well documented, when performing our study.
Additionally, a well-commented project might not con-
tain SAR as developers might not document refactor-
ing activities in the commit messages. We mitigate this
risk by choosing projects that do contain such docu-
mentation for our analysis.

External Validity. One of the most important limi-
tations of our approach is that developers do not usu-
ally indicate their refactoring-related activities in com-
mit messages as mentioned by Weissgerber [44]. To
mitigate this threat, we used well-commented Java projects
when performing our study. The evaluation of accu-
racy, precision, and recall of our model is based on only
3,000 commit messages from different open-source Java
projects; therefore, we cannot claim that the result of
those metrics will be the same for a different set of com-
mit messages from different types of projects and that
the sample size is good enough to yield statistically sig-
nificant results. Additionally, we were limited to the
Azure ML classifiers and the results are based on the
default settings as we did not change any parameter
value on the used machine learning algorithms. Also,
our dataset was originally extracted by using Refactor-
ingMiner [42]; for instance, any limitation or bias from
this tool would be reflected in our collected data.

8 Conclusion

Refactoring is a key element when it comes to al-
lowing the evolution of a software system and keep-
ing its quality high. Thus, in this paper, we proposed
a framework to identify and then classify refactoring
documentation reported in the in commit messages (known

as Self-Affirmed Refactorings (SAR) [2]) patterns by
using different techniques, such as Feature Hashing and
feature selection (Chi-Squared and Fisher Score), and
five machine learning algorithms, e.g., Bayes Point Ma-
chine (BPM), Averaged Perceptron (AP), Logistic Re-
gression (LR), Boosted Decision Tree (BDT), and Neu-
ral Network (NN).

Our main purpose was to find an efficient combina-
tion of algorithms that could predict refactorings. Thus,
for this, we built, trained, evaluated and compared dif-
ferent refactoring classification models using Azure ML
studio, which is a cloud-based environment that con-
sists of multiple machine learning modules to ease the
process from building to deploy machine learning so-
lutions.

After we trained different machine learning mod-
els and evaluated their results, we selected the one with
the best performance regarding predicting SAR patterns.
We were able to obtain the highest accuracy among the
other ones of 0.96 by combining Feature Hashing with
a bitsize of 15 plus filtering the data by 2,000 desired
features using Chi-Squared or Fisher Score and Bayes
Point Machine.

As an additional contribution, we constructed a pre-
dictive analysis model and made it publicly available in
the form of a web service to let others access and use
our solution to identify refactoring activities in a set of
commit messages.

In the future, we intend to explore more commit
messages from a more generalized variety of software
projects to collect more SAR patterns to keep training
our model with new ones. Additionally, we would like
to try using a different machine learning environment
or connect scripts to our model that could give us the
measurement of the execution time and retrieve the text
of the top features to better understand the operating
logic of the methods and algorithms that are part of our
solution.
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refactoring detection using software metrics variation. In: In-
ternational Symposium on Search Based Software Engineer-
ing, pp. 126–140. Springer (2013)

25. Mansouri, M.M.: Detection of rename local variable refac-
toring instances in commit history. Ph.D. thesis, Concordia
University (2018)

26. Mkaouer, M.W., Kessentini, M., Bechikh, S., Deb, K.,
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