
CATE: Concolic Android Testing Using Java
PathFinder for Android Applications

Patrick McAfee, Mohamed Wiem Mkaouer and Daniel E. Krutz
Department of Software Engineering

Rochester Institute of Technology

Rochester, NY, USA

Email: {pjm4439, mwmvse, dxkvse}@rit.edu}@rit.edu

Abstract—Like all software systems, Android applications are
not immune to bugs, security vulnerabilities, and a wide range
of other runtime errors. Concolic analysis, a hybrid software
verification technique which performs symbolic execution along
with a concrete execution path, has been used for a variety of
purposes including software testing, code clone detection, and
security-related activities. We created a new publicly available
concolic analysis tool for analyzing Android applications: Con-
colic Android TEster (CATE). Building on Java Path Finder
(JPF-SPF), this tool performs concolic analysis on a raw Android
application file (or source code) and provides output in a useful
and easy to understand format.

I. INTRODUCTION

Concolic analysis is a powerful static analysis technique

which has been traditionally used for software testing [4],

security related activities [1], and code clone detection [3].

While there are a few concolic analysis tools for Java, none are

immediately compatible with Android source code. Analysis

tools such as Java PathFinder-Symbolic PathFinder (JPF-SPF)1

and CATG2 will not work on Android applications because

the apps lack the main method which is typically required for

concolic analysis tools. We are proposing a new tool, Concolic

Android TEster3 (CATE), which allows users to perform

concolic analysis on Android application (.apk) source files

with ease and without the need for a physical Android device

or emulator. In addition to providing the benefits of concolic

static analysis, its generated concolic output may be important

for future work in clone detection and concolic analysis based

techniques [2]. Similar to our tool, JPF-Android4 verifies

Android apps using JPF. A primary benefit of this technique

is that it allows Android applications to be verified outside

an emulator using JPF. This tool differs from CATE in that

it does not use concolic analysis to perform model checking

and does not produce output about the functional nature of the

app (as our tool does).

II. CONCOLIC ANDROID ANALYSIS

There were several hurdles we had to overcome when

creating our tool. First, the Android SDK does not support

calls to arbitrary main functions, so it is therefore necessary

1http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-symbc
2https://github.com/ksen007/janala2
3http://www.se.rit.edu/∼dkrutz/cate/
4https://bitbucket.org/heila/jpf-android/src

to provide a wrapper for a decompiled Android APK file.

This provides a single input to be used as the root node for

the concolic parser’s tree. Second, Android applications are

not designed to be run outside an Android runtime, and the

provided Android development libraries are insufficient as they

are only stubs. This obstacle was overcome through the use

of Robolectric5, a dynamic Android mocking library which

allows for greater coverage of Android code paths. CATE

executes a linear series of steps to provide the results of

concolic analysis. An overview of the process is shown in

Figure 1.

Begin with APK

Unpack APK resources

and configuration files

Convert APK to

.java & .class

Analyze user entry points

into the application

Create wrapper for

decompiled APK

Create configuration files

for concolic analysis tool

Run Java Pathfinder

Log output from

Java Pathfinder

Process Complete

APK res directory

and assets

AndroidManifest.xml

Source Files

Manifest

Java Pathfinder

Configuration

Java Pathfinder Results

Fig. 1. CATE Workflow

The first step uses Apktool to produce the assets and

configuration files which are crucial for Robolectric to run

correctly later in the process. All the extracted files are placed

in a special directory for later manipulation along with a copy

of the targeted APK file.

5http://robolectric.org/

2017 IEEE/ACM 4th International Conference on Mobile Software Engineering and Systems (MOBILESoft)

208

2017 IEEE/ACM 4th International Conference on Mobile Software Engineering and Systems (MOBILESoft)

209

2017 IEEE/ACM 4th International Conference on Mobile Software Engineering and Systems (MOBILESoft)

213

Author Preprint



The second step utilizes dex2jar6 to produce the necessary

Java .jar files from the APK file. The .jar format is required

for later compilation and manipulation by the CATE tool. It

exposes access to the internal code in a way that standard Java

tools can easily work with. It also provides readable source

code, an invaluable resource during development.

The third step is analyzing the source code from the

generated jar file. Through the use of reflection, each class

is dynamically loaded and analyzed for known inputs, such

as an OnCreate method of an activity. A blocklist is used to

prevent excessive automated analysis of the Android libraries

themselves, which are dynamically loaded to a custom class-

path so that proper matching can happen. The types of inputs

found are used to determine what functions need to be called

and what kind of data they need to be sent by CATE and

JPF-SPF.

The fourth and most complex step creates a custom wrapper

jar against the created jar. Template files are used to create

raw Java source files with tokens. These tokens are replaced

by a source writer in CATE, which interprets the analysis from

the previous step. Then, calls to supported functions that the

framework or user would trigger manually are automated in

the source files. There are two .java files and a manifest file

created from this process, as well as a .jpf file. The first Java

file is a wrapper that makes all of the aforementioned calls

to the jar converted from the APK file and wraps those calls

in a single function as a JUnit test. Robolectric, the Android

mocking library being used, operates as a JUnit TestRunner

and thus the wrapper function must be a test to utilize the

mocks. The second Java file is the wrapper runner whose

purpose is loading the wrapper’s tests into JUnit and firing

them from inside a single entry point. This entry point is

then exposed to JPF-SPF and indirectly provides access to

the underlying functions from the APK file. The final file is a

custom manifest that references all dependencies as well as the

jar converted from the APK. The newly created Java source

and manifest are packaged into a custom wrapper jar to be

used in the next step of the process.

8 c h e c k c a s t
11 p u t f i e l d j a v a . u t i l . HashMap . t a b l e
14 a l o a d 0
15 i c o n s t 0
16 p u t f i e l d j a v a . u t i l . HashMap . hashSeed
19 a l o a d 0
20 a c o n s t n u l l
21 p u t f i e l d j a v a . u t i l . HashMap . e n t r y S e t
24 i l o a d 1

Listing 1. Example Concolic Output

The fifth and sixth steps build on part of the fourth. During

the creation of files from templates, a .jpf file is created. This

.jpf file is used by JPF-SPF to store arguments to pass to

the concolic tool. In particular, this stores the targeted entry

function provided by the wrapper jar, the functions that should

have the analysis run on them, and the settings to enable

concolic analysis. Finally, the output generated by the tool

6https://sourceforge.net/projects/dex2jar/

is saved for the user. A small example of this output is shown

in Listing 1, and more complete results may be found on

the project website as well as instructions on how to install

and use CATE. This output may be useful to researchers and

developers in a variety of ways including clone detection,

uncovering defects and analyzing the app’s functional flow.

III. ANALYSIS AND FUTURE WORK

The most prominent area that concolic analysis has been

applied to thus far is software testing, specifically for dynamic

test input generation, test case generation, and bug detection.

These are areas which not only affect conventional software,

but Android apps as well. While there have been many testing

tools created to assist in ensuring high quality apps, we believe

that our tool can assist in detecting a variety of issues which

were previously not discoverable using a static analysis based

approach for Android apps. Our tool may provide valuable

assistance in this area for both developers and researchers in

a variety of these problematic areas.
While CATE represents a powerful and innovative static

analysis tool, there are some notable limitations. The targeted

coverage is limited to the activity lifecycle startup and is also

restricted by the intentional black box testing nature of usage

with mocks. The primary issue with the black box nature

is that certain Android apps require highly specific data at

certain intervals, such as when communicating with servers.

Robolectric has no way of knowing what an app expects back

from specific calls, and thus cannot correctly mock it out;

it can only mock out more simple or common Android API

calls. This may cause certain code paths to be excluded from

coverage if specific results for calls are expected.
Previous research has found that 86% of malware samples

were repackaged version of legitimate apps [5]. Since concolic

analysis has been used in clone detection, it can likely be a

valuable asset for detecting repackaged apps since they are

essentially just clones or copies of legitimate apps or libraries.

Furthermore, CATE’s analysis with other existing Android

testing tools such as JPF-Android and EvoDroid7.

REFERENCES

[1] B. Chen, Q. Zeng, and W. Wang. Crashmaker: An improved binary
concolic testing tool for vulnerability detection. In Proceedings of the
29th Annual ACM Symposium on Applied Computing, SAC ’14, pages
1257–1263, New York, NY, USA, 2014. ACM.

[2] D. Krutz, S. Malachowsky, and E. Shihab. Examining the effectiveness of
using concolic analysis to detect code clones. In Proceedings of the 30th
Annual ACM Symposium on Applied Computing, SAC ’15, New York,
NY, USA, 2015. ACM.

[3] D. Krutz and E. Shihab. Cccd: Concolic code clone detection. In Reverse
Engineering (WCRE), 2013 20th Working Conference on, pages 489–490,
Oct 2013.

[4] K. Sen, D. Marinov, and G. Agha. Cute: A concolic unit testing engine for
c. In Proceedings of the 10th European Software Engineering Conference
Held Jointly with 13th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, ESEC/FSE-13, pages 263–272,
New York, NY, USA, 2005. ACM.

[5] Y. Zhou and X. Jiang. Dissecting android malware: Characterization
and evolution. In Proceedings of the 2012 IEEE Symposium on Security
and Privacy, SP ’12, pages 95–109, Washington, DC, USA, 2012. IEEE
Computer Society.

7http://www.sdalab.com/projects/evodroid

209210214

Author Preprint




