
Recommendation System for Software Refactoring Using
Innovization and Interactive Dynamic Optimization

Wiem Mkaouer, Marouane
Kessentini, Slim Bechikh

University of Michigan, MI, USA
firstname@umich.edu

Kalyanmoy Deb
Michigan State University, MI, USA

kdeb@egr.msu.edu

Mel Ó Cinnéide
University College Dublin, Ireland

mel.ocinneide@ucd.ie

ABSTRACT
We propose a novel recommendation tool for software refactoring
that dynamically adapts and suggests refactorings to developers
interactively based on their feedback and introduced code
changes. Our approach starts by finding upfront a set of non-
dominated refactoring solutions using NSGA-II to improve
software quality, reduce the number of refactorings and increase
semantic coherence. The generated non-dominated refactoring
solutions are analyzed using our innovization component to
extract some interesting common features between them. Based
on this analysis, the suggested refactorings are ranked and
suggested to the developer one by one. The developer can
approve, modify or reject each suggested refactoring, and this
feedback is used to update the ranking of the suggested
refactorings. After a number of introduced code changes, a local
search is performed to update and adapt the set of refactoring
solutions suggested by NSGA-II. We evaluated this tool on four
large open source systems and one industrial project provided by
our partner. Statistical analysis of our experiments over 31 runs
shows that the dynamic refactoring approach performed
significantly better than three other search-based refactoring
techniques, manual refactorings, and one refactoring tool not
based on heuristic search.

Categories and Subject Descriptors
D.2 [Software Engineering]

General Terms
Algorithms, Reliability

Keywords
Search-based software engineering, software quality, refactoring

1. INTRODUCTION
Software systems rapidly become complex and difficult to

maintain. It has been reported that the cost of maintenance and
evolution activities comprises more than 80% of total software
costs. In addition, it has been shown that software maintainers
spend around 60% of their time in understanding the code [10].
To facilitate maintenance tasks, one of the widely used techniques

is refactoring, which improves design structure while preserving
the overall functionality of the software [2].

There has been much work on different techniques and tools for
software refactoring [2][3][4][5][6][17] that can be mainly
classified into two categories: manual and fully-automated
approaches. For the first category, several tools are proposed to
provide support for the application of several types of refactoring
manually [2][3]. The developers identify which refactoring type
to apply and where. Thus, the manual refactoring process can be a
tedious task for developers. In the second category of refactoring
studies [4][5][6], most of the proposed approaches generate as
output a long sequence of refactorings that can be applied by
developers to improve the quality of systems by fixing, for
example, code smells [2]. Here the developers have to accept the
entire solution in spite of the fact that they prefer, in general,
stepwise interactive approaches where they have total control of
the refactorings being applied. Few studies consider the
suggestion of refactoring operations based on interaction between
the developer and the refactoring tool.

We propose a novel interactive recommendation tool for
software refactoring that dynamically adapts and suggests
refactorings to developers based on their feedback and introduced
code changes. Our approach starts by finding upfront a set of
refactoring solutions using a multi-objective evolutionary
algorithm NSGA-II, proposed by Deb [7], to improve software
quality, reduce the number of refactorings and increase semantic
coherence. The output of NSGA-II is a set of non-dominated
refactoring solutions that find a good trade-off between these
three objectives. One of the challenges when adapting a multi-
objective technique to a software engineering problem is how to
select the best solution from the set of non-dominated ones, called
the Pareto front [8]. To this end, we propose, for the first time, the
use of innovization (innovation through optimization) [9] to
analyze and explore the Pareto front interactively with the
developers. Our innovization algorithm starts by finding the most
frequent refactoring pattern/operations between the set of non-
dominated refactoring solutions. Based on this analysis, the
suggested refactorings are ranked and suggested to the developer
one by one. The developer can approve, modify or reject each
suggested refactoring. This feedback is then used to update the
ranking of the suggested refactorings. After a number of
introduced code changes, a local search [1] is executed to update
and adapt the set of refactoring solutions suggested by NSGA-II.
We implemented our proposed approach and evaluated it on four
open source systems, as well as one industrial system provided by
our industrial partner.

2. DINAR: DYNAMIC INTERACTIVE
MULTI-OBJECTIVE REFACTORING

We first present an overview of our technique called DINAR
(Dynamic INterActive Refactoring) and then provide the details
of our problem formulation and the solution approach.

331

Author Preprint

2.1 Overview
The goal of our approach is to propose a dynamic, interactive

way for software developers to refactor their systems. The
general structure of the DINAR approach is sketched in Figure 1.

Figure 1. Approach overview: DINAR.

The three main components of DINAR are: 1- finding the best
set of refactoring solutions that satisfies three objectives using
NSGA-II [9]; 2- applying our innovization algorithm to rank the
refactorings and suggest them to developers; and 3- updating the
refactoring solutions after a number of interactions with
developers using a multi-objective local search algorithm [1].

Our refactoring framework starts by finding upfront the list of
best refactoring solutions that represents a good trade-off between
improving software quality which corresponds to minimizing the
number of code-smells and improving QMOOD (Quality Model
for Object-Oriented Design) quality metrics [10]; minimizing the
size of the refactoring solutions (number of refactorings) and
maximizing/preserving the semantic coherence of the design.
Therefore, we use a multi-objective optimization algorithm,
NSGA-II, to compute this optimal sequence of refactorings based
on our previous work [4].

The output of this first step is a set of non-dominated
refactoring solutions, called the Pareto front [7], which optimizes
the three objectives described above. The second component of
DINAR explores this Pareto front in an intelligent manner using
an innovization algorithm (INNOVation through optimIZATION)
[9] to rank recommended refactorings, and suggest them to the
developer one by one as a sequence of transformations, based on
several features: number of occurrences of a refactoring operation
in all the Pareto front solutions, the order of the refactoring in the
sequence, and developer feedback. In fact, the feedback from the
developer can be to approve, apply, modify or reject the
suggested refactoring. This feedback is used by our innovization
algorithm to guide, implicitly, the exploration of the Pareto front
to find the optimal solution that sometimes does not correspond
exactly to a solution generated by NSGA-II.

After number of interactions, developers may have modified or
rejected a high number of suggested refactorings or introduced
several new code changes (new functionalities, etc.). In this case,
the third component of DINAR is executed to update the last set
of non-dominated refactoring solutions using an indicator-based
local search [1] based on the three objectives defined in the first
component. We selected indicator-based local search since it is a

well-known quick local search algorithms that can update the
solutions quickly based on new changes in the inputs.

The output of this third component is a new set of updated
refactoring solutions that will be recommended to the developer
one by one using the innovization component. The second
component of DINAR is executed when the developers decide to
stop refactoring the system and the third component is executed
periodically after a high number of changes have been performed
on the system.

2.2 Solution Approach
We describe in the following sections the details of the two main
interactive components of DINAR.

2.2.1 Interactive Recommendation of Refactorings
After the multi-objective optimization task described in the

previous step, a set of optimal refactoring solutions are generated
that find a good trade-off between the three objectives. We can
now analyze these solutions to investigate if there exists some
common principles among all or many of these optimal
refactoring solutions. For example, it is interesting to see if most
of the refactoring solutions have some common features such as
common refactoring operations among most of the solutions
and/or a specific common order in which to apply the
refactorings. Such information is used to rank the suggested
refactorings for developers using the following formula:

refdrecommende

RSim

occurencenumber

occurencenumber
RRank

i

k
jk

ji _#

d_ref)recommende,(

max

_
)(1

,

,




where Ri,j is the refactoring operation number (index in the
solution vector) i of solution number j. The first component of the
ranking formula counts the number of occurrences of the
refactoring operation Ri,j among all the Pareto front solutions and
normalizes it between 0 and 1. The second component compares
the previous refactoring operations already applied by the
developers (feedback) and the solution j.

The ranking of refactorings is updated automatically after every
feedback (interaction) from the developer. DINAR proposes three
levels of interaction as described in Figure 2. The developer can
check the ranked list of refactorings then he can apply, modify or
reject the refactoring. If the selected action is ‘apply’ then the
refactoring will be automatically applied. If the developer prefers
to modify it then DINAR can assist him during the modification
process as described in Figure 3. In fact, DINAR proposes to the
developer a set of recommendations to modify the refactoring
based on the history of changes applied in the past and the
semantic similarity between code elements (classes, methods,
etc.). For example, if the developer wants to modify a move
method refactoring then, once the source method has been
specified, DINAR can suggest a list of possible target classes
ranked based on the history of changes and semantic similarity.
This is an interesting feature since developers may know which
method to move but may not be certain which the best target class
is. The same observation is valid for the other refactoring types.
Another action that the developers can select is to reject/delete a
refactoring from the list. After every action selected by the
developer, the ranking is updated based on developer feedback as
described in the ranking formula where the second component is
updated dynamically.

After a number of modified or rejected refactorings, or the
introduction of several new code changes, the generated Pareto

332

Author Preprint

front of refactoring solutions by NSGA-II is updated since the
system was modified in different locations. Thus, the next
component of DINAR is executed to update the refactoring
solutions based on the new software system. The next section
describes this step.

Figure 2. Refactorings recommended by

DINAR.

Figure 3. Recommended target classes by DINAR for a move
method refactoring to modify.

2.2.2 Dynamic Update of Refactorings
Recommendation

The input of this component is the new system after developers
have made major changes to the original one, and the latest set of
good refactoring solutions. The output is a new updated set of
non-dominated refactoring solutions that are adapted to the new
system. Then, the second component (innovization) is executed
based on the output of this dynamic optimization component.

In the non-interactive refactoring approaches, the set of
refactorings comprising the best chosen solution, needs to be fully
executed in order to reach the solution’s promised results. Thus,
any changes applied to the set of refactorings such as changing or
skipping some of them could deteriorate the resulting system’s
quality. This represents a major limitation to the existing work
since it limits the developer’s intervention to only choosing the
preferred set of refactorings. In this context, the goal of this work
is to cope with the above mentioned limitation by granting to the
developer the possibility to customize the set of suggested
refactorings either by accepting, modifying or rejecting them. The
novelty of this work is its ability to take into account the
developer’s interaction, in terms of introduced customization to
the existing solution, by conducting a local search to locate a new
solution in the Pareto front that is nearest to the newly introduced
changes. As the ranking of solutions is updated with after
interaction, we use a quick multi-objective local search algorithm
to locate the best solution in the new ranking and then update the
refactoring solutions based on the new changes performed by

developers. In fact, this feature avoids executing again the NSGA-
II algorithm since the system to refactor is only slightly modified
from the original one. Thus, the refactoring solutions will be
quickly updated. To this end, we selected the indicator-based
local search [1] with the same three objectives of the original
problem.

This component is executed automatically to update the
refactoring solutions but the developer can also select to run it at
any time if it is found that the solutions should be updated.

Our approach has narrowed the gap that exists between
automated search-based refactoring techniques and human
intensive development by incorporating the search into the
development process, and allowing the developer the choice of
the best recommended refactoring that best matches their coding
preferences.

3. EVALUATION STUDY
3.1 Research Questions

We defined four research questions to address in our
experiments.

RQ1: Can DINAR help developers to refactor efficiently their
systems and improve their quality?

RQ2: Can DINAR help developers to find useful refactorings
quickly?

RQ3: How does DINAR perform compared to fully-automated
and manual refactoring techniques?

RQ4: Can DINAR be useful for developers during the
development of software systems?

To answer RQ1, it is important to validate the proposed
refactoring solutions from both quantitative and qualitative
perspectives. For the qualitative validation, we asked groups of
potential users (software engineers) of DINAR to evaluate,
manually, whether the suggested operations are feasible and
efficient in improving the quality and their maintainability
objectives. We define the metric “manual correctness” (MC)
which corresponds to the number of meaningful operations over
the total number of suggested operations. The MC metric is
computed after the user interaction and is given by the following
equation:

gsrefactorin proposed#

gsrefactorin ppliedcoherent/a#
MC

For the quantitative validation, we asked a group of developers
to analyze and apply manually several refactoring types using
Eclipse on several code fragments extracted from different
systems where most of them correspond to code smells identified
using in previous studies that should be refactored [4][6]. Then,
we calculated precision and recall scores to compare between
recommended refactorings by DINAR and those suggested
manually:

]1,0[
|operations expected|

 |operations expected| |operations suggested|
RC 


recall

]1,0[

|operations suggested|

 |operations expected| |operations suggested|
PR 


precesion

To answer RQ2, we evaluated the time T required by
developers to refactor several code fragments extracted from
several systems with DINAR and without DINAR. This metric T
includes all the activities from the execution time of the tool until
finishing applying and validating all the refactorings (developers
reach all the objectives of refactoring session such as fixing code
smells). In addition, we defined a metric PRT that calculates the
percentage of refactorings selected by developers from the top 5

333

Author Preprint

refactorings of our recommendations list. We define also another
metric PSC that corresponds to the percentage of selected code
elements (methods, classes, etc.) from the top 5 ranked elements
when developers want to modify a refactoring.

To answer RQ3, we compare our approach to three other
existing fully-automated search-based refactoring techniques:
Kessentini et al. [6], Ouni et al. [4] and Harman et al. [5]. We
considered also in our experiments another popular design defects
detection and correction tool JDeodorant [16] that does not use
heuristic search techniques. We used the metrics MC, RC, PR,
NF, T and G for the comparison.

To answer RQ4, we used a post-study questionnaire that
collects the opinions of developers on DINAR.

3.2 Experimental setting
We used a set of well-known open-source Java projects and one

project from our industrial partner, the Ford Motor Company. We
applied our approach to four open-source Java projects: Xerces-J,
JFreeChart, GanttProject, and JHotDraw . Xerces-J is a family of
software packages for parsing XML. Table 1 provides some
descriptive statistics about these six programs.

Table 1.Statistics of the studied systems.

Systems Release # classes KLOC
#Cod
e
smells

#Refactoring
s

Xerces-J v2.7.0 991 240 91 83

JHotDraw v6.1 585 21 25 49

JFreeChart v1.0.9 521 170 72 88

GanttProject v1.10.2 245 41 49 56

JDI-Ford v5.8 638 247 83 94

Parameter setting influences significantly the performance of a

search algorithm on a particular problem. For this reason, for each
algorithm and for each system, we perform a set of experiments
using several population sizes: 50, 100, 200, 300 and 500. The
stopping criterion was set to 100,000 evaluations for all
algorithms in order to ensure fairness of comparison. The other
parameters’ values were fixed by trial and error and are as
follows: (1) crossover probability = 0.8; mutation probability =
0.5 where the probability of gene modification is 0.3; stopping
criterion = 100,000 evaluations. For the indicator-based multi-
objective local search [1], we used 30 iterations, number of
neighbors is fixed to 5, number of genes to modify by mutation is
20% of the solution length and the number of fails is 10 (the
algorithm is stopped when there is no improvement in the fitness
functions during 10 iterations otherwise the stopping criterion is
30 iterations). Each algorithm is executed 31 times with each
configuration and then comparison between the configurations is
done using the Wilcoxon test. We used 23 refactoring types in our
experiments, namely Add Parameter, Rename Method
Encapsulate Collection/Downcast/Field, Collapse Hierarchy, Hide
Method, Extract Class/Interface/Method/Subclass/Superclass,
Inline Class/Method, Move Field/Method, Pull Up Field/Method,
Push Down Field/Method and Remove Parameter/Setting Method.

Our study involved 8 subjects from the University of Michigan
and 3 software engineers from Ford Motor Company and another
large software company. Subjects include 2 master students in
Software Engineering, 6 PhD students in Software Engineering
and 3 software developers. All the subjects are volunteers and
familiar with java development and refactoring. The experience of
these subjects on Java programming ranged from 3 to 17 years.

We designed our study to answer our research questions. The
subjects were invited to fill a questionnaire that aims to evaluate
our suggested refactorings.

3.3 Results and Discussions
Results for RQ1: We reported the results of our empirical

qualitative evaluation in Figure 4 (MC). As reported in Figure 4,
the majority of the refactoring solutions recommended by DINAR
were approved by developers and DINAR performed clearly
better than all other existing approaches. On average, for all of the
five studied systems, 85% of proposed refactoring operations
were considered to be semantically feasible, improve software
quality and appear useful to the software engineers. In addition to
the qualitative evaluation, we automatically evaluate our approach
without using the feedback of potential users to give more
quantitative evaluation to answer RQ1. Thus, we compare the
proposed operations with some expected ones defined manually
by the different groups for several code fragments extracted from
the five systems where most of them represent code smells
detected using previous work [6]. We used also Ref-Finder [11] to
identify operations that are applied between the program version
under analysis and the next version. Figure 5 and Figure 6
summarize our finding. We found that a considerable number of
proposed operations (an average of more than 75% in terms of
precision and recall) that are already applied to the next version
by software development team or suggested manually. The recall
scores are higher than precision ones since we found that the
manual suggested refactorings by developers are incomplete
compared to the solutions provided by DINAR and this is was
confirmed by the qualitative evaluation (MC).

Figure 4. Median manual correctness (MC) value over 31 runs
on all the five systems using the different refactoring

techniques with a 99% confidence level (α < 1%).

Figure 5. Median precision (PR) value over 31 runs on all the
five systems using the different refactoring techniques with a

99% confidence level (α < 1%).

Results for RQ2: We evaluated the ability of DINAR to help
software engineers to quickly find good refactorings. Figure 7
evaluates the average time T required by developers to finalize a

334

Author Preprint

refactoring session using DINAR. The average time is around 1
hour and a half including all the refactoring activities: execution
of NSGA-II, interactive refactoring with the developer and the
local search. There is a slight variation of the refactoring time
required since it depends on the system to refactor. An average of
one hour and a half is reasonable since developers will use
DINAR during the development to maintain the quality of their
systems and they can switch between modifying existing
functionality and refactoring.

Figure 6. Median recall (RC) value over 31 runs on all the five
systems using the different refactoring techniques with a 99%

confidence level (α < 1%).

We considered two other metrics PRT and PSC to evaluate the
efficiency of DINAR in ranking the refactorings and code
elements to modify since this helps the developers to find quickly
good refactoring to apply. Figure 8 shows that more than 92% of
applied or modified refactorings (PRT) are among the top 5
recommended ones by DINAR at every iteration. In addition,
most of the code elements recommended to developers when they
modify a refactoring are among the top 5, also with an average of
more than 90%. To conclude, it is clear that DINAR helps
software engineers to quickly find good refactoring (this answers
RQ2).

Figure 7. Average time T (minutes) required by developers

to finalize a refactoring session.

Results for RQ3: Figures 4, 5, 6 and 7 confirm the better
performance of DINAR compared to both fully automated and
manual refactoring techniques. Figure 4 shows that DINAR
provides significantly higher manual correctness results (MC)
than all other approaches having MC scores respectively between
50% and 75% on average across the different systems. The same
observation is valid for the quality gain, precision and recall as
depicted in Figures 5 and 6. Figure 7 shows that DINAR can help
developers to find suitable refactorings quicker than existing
search-based refactoring approaches and manual approaches, with
the notable exception of JDeodorant. This can be explained by the
fact that JDeodorant is not using heuristic search but proposing a

template solution to fix certain types of code smells. However, the
time required to use DINAR is still comparable to JDeodorant,
and is able to provide more effective refactoring solutions.

Figure 8. Median value of refactorings (PRT) and code
elements selected from the top5 on all the five systems.

Results for RQ4: Most of the participants mention that DINAR
is faster than manual refactoring since they spent a long time
during manual refactoring to find the locations where the
refactorings should be applied. For example, developers spend
time in applying Extract Class to find the methods to move to the
new created class, or when applying Move Method then it takes
time to find the best target class by manual exploration of the
source code. Thus, the developers liked the functionality of
DINAR that helps them to modify a refactoring and find quickly
the right parameters based on the recommendations. Furthermore,
refactorings may affect several locations in the source code,
which can be a time-consuming task to perform manually but can
be performed in an instant using DINAR.

The participants found DINAR helpful for both floss
refactoring, to maintain a good quality of the design and also root
canal refactoring to fix some quality issues such as code smells.
The developers justify their conclusions by the following
interesting features in DINAR: a) the list of recommended
refactorings helps them to choose the desired refactoring very
quickly, b) DINAR offers them the possibility to modify the
source code (to add new functionality) while doing refactoring
since the list of recommendations are updated dynamically. So
developers can easily switch between both activities: refactoring
and modifying the source code to augment or amend existing
functionality, c) DINAR allows developers to access all the
functionality of the IDE (e.g. Eclipse). d) the suggested
refactorings by DINAR can fix code smells (root canal
refactoring) or improve some quality metrics (floss canal
refactoring) due to the use of the multi-objective approach.
Another important feature that the participants mention is that
DINAR allows them to take advantage of using multi-objective
optimization for software refactoring without the need to learn
anything about optimization and exploring explicitly the Pareto
front to select one “ideal” solution. The implicit exploration of the
Pareto front in an interactive fashion represents an important
advantage of DINAR along with the dynamic update of the
recommended list of refactoring using innovization. In fact,
developers had a lot of difficulties in using the multi-objective
tool of Ouni et al. [4] to explore the Pareto front to find a good
refactoring solution. In addition, they did not appreciate the long
list of refactorings suggested in [4] since they want to take control
of modifying and rejecting some refactorings. In addition, the

335

Author Preprint

validation of this long list of refactorings is time consuming.
Thus, they appreciate that DINAR suggests refactoring one by
one and updates the list based on developer feedback.

4. THREATS TO VALIDITY
Some threats need to be considered when interpreting our study

results.
The first threat is the limited number of subjects and evaluated

systems (11 participants and 5 systems), which externally
threatens the generalizability of our results. In addition, we cannot
conclude that DINAR can perform very well also when helping
developers since our study was limited to the use of 23 types of
refactorings and evaluating 8 types of code smells. Future
replications of this study are necessary to confirm our findings.

The second threat is related to the variation of correctness and
speed between the different groups when using DINAR and other
tools such as JDeodorant. In fact, DINAR may not be the only
reason for the improved performance because the subjects have
different programming skills and familiarity with refactoring
tools. However, developers were not assigned to groups randomly
but according to their programming experience to reduce the gap
between the different groups. Another threat concerns the data
about the actual refactorings of the studied systems. In addition to
the documented refactorings, we use Ref-Finder, which is known
to be efficient. Indeed, Ref-Finder was able to detect refactoring
operations with an average recall of 95% and an average precision
of 79% [11]. To ensure the precision, we manually inspect the
refactorings found by Ref-Finder by randomly selecting a set of
detected changes and evaluate them by the participants of our
experiments.

5. CONCLUSION AND FUTURE WORK
We proposed, in this paper a novel interactive recommendation

tool, called DINAR, for software refactoring that dynamically
adapts and suggests refactorings to developers based on their
feedback and introduced code changes. To evaluate the
effectiveness of DINAR, we conducted a human study with 11
software developers who evaluated the tool and compared it with
the state-of-the-art refactoring techniques. Our evaluation results
provide strong evidence that DINAR improves the applicability of
software refactoring and proposes a novel way for software
developers to refactor their systems.

Future work should validate DINAR with additional refactoring
types, new systems and code smell types in order to draw
conclusions about the general applicability of our methodology.
We will also compare DINAR with other refactoring techniques
[14][15]. Furthermore, in this paper, we only focused on the
recommendation of refactorings. We are planning to extend the
approach by automating the test and verification of applied
refactorings. In addition, we will consider the importance of code
smells during the correction step using previous code changes,
class complexity, etc. Another future research direction related to
our work is to adapt our interactive refactoring recommendation
tool to several other software engineering problems such as
software remodularization, change detection and the next release
problem.

ACKNOWLEDGEMENTS
This work was supported, in part, by the Institute for Advanced

Vehicle Systems-Michigan grant and the Science Foundation
Ireland grant 10/CE/I1855 to Lero - the Irish Software
Engineering Research Centre.

6. REFERENCES
[1] Basseur, M. Liefooghe, A. Le, K. and Burke, E. K. 2012.

The efficiency of indicator-based local search for multi-
objective combinatorial optimisation problems. Journal of
Heuristics. vol. 18, issue 2, pp 263-296.

[2] Fowler, M. Beck, K. Brant, J. Opdyke, W. and Roberts, D.
1999. Refactoring – Improving the design of existing code.
Addison Wesley, ISBN 978-0201485677.

[3] Murphy-Hill, E. R. Parnin, C. and Black, A. P. How we
refactor, and how we know it. IEEE Transactions on
Software Engineering, vol. 38, no. 1, pp. 5–18, 2012.

[4] Ouni, A. Kessentini, M. Sahraoui H. and Boukadoum, M.
2012. Maintainability Defects Detection and Correction: A
Multi-Objective Approach. Journal of Automated Software
Engineering, Springer. vol. 20, issue 1, pp 47-79.

[5] Harman, M. and Tratt, L. Pareto optimal search based
refactoring at the design level. GECCO07. pp. 1106-1113.

[6] Kessentini, M. Kessentini, W. Sahraoui, H. Boukadoum, M.
and Ouni, A. 2011. Design Defects Detection and Correction
by Example, 19th IEEE International Conference on
Program Comprehension. pp. 81-90.

[7] Deb, K. Pratap, A. Agarwal, S. and Meyarivan, T. 2002. A
fast and elitist multiobjective genetic algorithm: NSGA-II.
TEC. vol. 6, pp. 182–197.

[8] Harman, M. Mansouri, S. A. and Zhang, Y. Search-based
software engineering: 2012. Trends, techniques and
applications. ACM Computing Surveys, vol. issue 45, no. 1.

[9] Deb, K. and Srinivasan, A. Innovization: innovating design
principles through optimization. 2006. GECCO. pp. 1629-
1636.

[10] Bansiya, J. and Davis, C. G. 2002. A hierarchical model for
object-oriented design quality assessment. IEEE
Transactions on Software Engineering. vol. 28. pp. 4–17.

[11] Prete, K. Rachatasumrit, N. Sudan, N. and Kim, M. 2010.
Template-based reconstruction of complex refactorings.
Proceedings of the 26th IEEE International Conference on
Software Maintenance. pp. 1–10.

[12] Hall, M. Walkinshaw, N. McMinn, P. 2012. Supervised
software modularization. ICSM12. pp. 472-481.

[13] Bavota, A. Carnevale, F. De Lucia, A. and Di Penta, M.
2012. Putting the Developer in-the-Loop: An Interactive GA
for Software Re-modularization. SSBSE. pp. 75-89

[14] Lucia, Lo, D. Jiang, and L. Budi, A. 2012. Active refinement
of clone anomaly reports. International Conference on
Software Engineering. pp. 397-407.

[15] Gong, L. Lo, D. Jiang, L. and Zhang, H. 2012. Interactive
fault localization leveraging simple user feedback.
ICSM2012. pp. 67-76.

[16] Fokaefs, M. Tsantalis, N. Stroulia, E. and Chatzigeorgiou, A.
2011. JDeodorant: identification and application of extract
class refactorings. ICSE2011. pp. 1037-1039.

[17] Kessentini, W. Kessentini, M. Sahraoui, H. Bechikh, S. and
Ouni, A. 2014. A Cooperative Parallel Search-Based
Software Engineering Approach for Code-Smells Detection,
IEEE Transactions on Software Engineering, 2014, to
appear.

336

Author Preprint

