23
24
25
26
27
28
29

39
40
41
42
43
44

TSDETECT: An Open Source Test Smells Detection Tool

Anthony Peruma
axp6201@rit.edu
Rochester Institute of Technology
Rochester, New York, USA

Mohamed Wiem Mkaouer
mwmvse@rit.edu
Rochester Institute of Technology
Rochester, New York, USA

ABSTRACT

The test code, just like production source code, is subject to bad
design and programming practices, also known as smells. The pres-
ence of test smells in a software project may affect the quality, main-
tainability, and extendability of test suites making them less effec-
tive in finding potential faults and quality issues in the project’s pro-
duction code. In this paper, we introduce TSDETECT, an automated
test smell detection tool for Java software systems that uses a set of
detection rules to locate existing test smells in test code. We evaluate
the effectiveness of TSDETECT on a benchmark of 65 unit test files
containing instances of 19 test smell types. Results show that TsDE-
TECT achieves a high detection accuracy with an average precision
score of 96% and an average recall score of 97%. TSDETECT is pub-
licly available, with a demo video, at: https://testsmells.github.io/

CCS CONCEPTS

«» Software and its engineering — Software testing and de-
bugging; Software notations and tools; Software maintenance tools.

KEYWORDS
Software Quality, Test Smells, Detection Tool

ACM Reference Format:

Anthony Peruma, Khalid Almalki, Christian D. Newman, Mohamed Wiem
Mkaouer, Ali Ouni, and Fabio Palomba. 2022. TSDETECT: An Open Source
Test Smells Detection Tool. In Proceedings of ACM Conference (Conference’17).
ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/nnnnnnn.
nnnnnnn

1 INTRODUCTION

Quality assurance is a crucial driver in any software project, and
the success of the project depends on the quality aspects it exhibits,
meaning we need to optimize these aspects. Software testing is one
of the widely-acknowledged techniques that are of paramount im-
portance for quality assurance. There are different types of testing
strategies that can be adopted to test a software system, such as
unit testing [27]. Unit testing involves developers testing the small-
est unit in the production codebase, which is typically a method.
Hence, this process requires developers writing test code to exercise
production code.

Conference’17, July 2017, Washington, DC, USA
2022. ACM ISBN 978-x-xxxx-xxxx-X/YY/MM. .. $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Khalid Almalki
ksa8566@rit.edu
Rochester Institute of Technology
Rochester, New York, USA

Ali Ouni
ali.ouni@etsmtl.ca
ETS Montreal, University of Quebec
Montreal, Quebec, Canada

Christian D. Newman
cnewman@se.rit.edu
Rochester Institute of Technology
Rochester, New York, USA

Fabio Palomba
fpalomba@unisa.it

SeSa Lab - University of Salerno
Fisciano (SA), Italy

Even though the unit test code will not be executed in produc-
tion, it is essential that developers follow standard programming
practices when implementing a test suite. This practice ensures that
the production code is effectively exercised and enables developers
to easily identify defects in the system. Similar to traditional code
smells, i.e., bad programming practices, unit tests may also suffer
from smells that are exclusive to the testing domain [16]. Further-
more, just like how traditional code smells cause a system to be
more prone to changes and defects [20], it has been shown that test
smells may negatively impact the quality of the system [30].

Therefore, there is a growing need to incorporate the verifica-
tion of bad testing practices into modern code reviews. While there
exist open-source quality assurance tools, such as PMD [3], Check-
style [1], and FindBugs [2], which primarily focus on detecting a
variety of quality issues in production code, the number of open-
source tools that detect a wide variety of test smells and supports
integration with continuous integration frameworks is limited.

This paper introduces TSDETECT, an open-source tool that cur-
rently supports the detection of 19 common test smells, i.e., devia-
tions from good unit testing programming practices, as advocated
in xUnit guidelines [16, 17]. These 19 smells are part of the catalog
of unit test smells, and details about their definitions, rationale, and
examples appear in published literature [22]. TSDETECT takes, as
input, software project source code and first separates the set of unit
test files from production source files, then generates their Abstract
Syntax Trees (ASTs) in order to search for any predefined patterns
of bad test programming practices syntactically using detection
rules. TSDETECT generates, as output, a file containing all detected
violations. TSDETECT has been designed to be easy to extend, i.e.,
developers can easily calibrate the predefined rules and add their
own customized rules if needed. Moreover, although TSDETECT
currently detects 19 test smells, it is designed with a high level of
flexibility to incorporate new smell types easily, and also permits
the customization of the existing smell detection rules as shown
later in Section 3, where we discuss the architecture of the tool.

To evaluate the correctness of TSDETECT, we performed a qual-
itative analysis on a benchmark of 65 unit test files that contain
instances from various smell types. Analysis of our tool has shown
that TsSDETECT is able to correctly detect test smells with a precision
score ranging from 85% to 100% and a recall score from 90% to 100%
with an average F-score of 96.5%.

Furthermore, we have utilized TSDETECT to perform a large-scale
empirical study on open-source Android applications (apps) and tra-
ditional Java systems [22]. Our study investigated the occurrences

59
60

61

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

106

107

108

109

110

111

112

114

115

116

https://testsmells.github.io/
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

150

160
161
162
163
164
165
166
167
168
169
170
171
172
173

174

Conference’17, July 2017, Washington, DC, USA

and distribution of the 19 test smells on 656 open-source Android
apps, including a comparison of smell type occurrence with tradi-
tional Java systems. In a subsequent study [26], we explored the
impact and relationship between refactoring operations and test
smells, detected by TSDETECT, in 250 open-source Android apps.

Open source tool and documentation. The TSDETECT
project’s website [4] includes the tool source code, along with
a demonstration video and documentation on how to use it. The
website also contains examples and general information about test
smells. Additionally, TSDETECT has received increasing interest
on GitHub from the development and research communities in
the form of forks and feedback on how to improve our tool and
make it more practical. We encourage the community to contribute
improvements and extensions to TSDETECT.

2 BACKGROUND AND MOTIVATION

Test smells represent deviations from well-established testing prac-
tices and guidelines on how test cases should be designed, im-
plemented, and how they should interact with each other. The
detection of such potential deviations is typically a tedious, manual,
and error-prone task for developers and testers. Effective detection
of test smells requires expertise from developers to inspect, under-
stand, and run the test to be able to correctly detect the violations.

The goal of implementing TSDETECT is to provide developers
with an automated approach for optimizing the quality of their test
suites. TSDETECT has the ability to detect 19 smells occurring in
JUnit based unit test files, some of which have been highlighted in
existing literature as being problematic [9, 17, 30, 32]. The list of
detected smells supported by TSDETECT is reported in Table 1 along
with their definitions/detection rules. In summary, TSDETECT ana-
lyzes the test suite for the existence of certain violations to xUnit
testing guidelines [16, 17]. Even though all test smells detected by
the tool apply to any Java-based system, one smell, namely Default
Test, is specific to Android applications. For the sake of space limi-
tations, we provide the necessary background information about
the smells supported by TSDETECT in our prior study [22]. Addi-
tionally, our project’s website [4] contains examples of real-world
code snippets that exhibit each of the supported smell types.

The detected test smells by TSDETECT provides valuable support
for developers. Our prior work [22] has shown the prevalence of
these smells in open-source systems, indicating the difficulty of
developers to remove them from the codebase during the lifetime
of the project. Furthermore, in our previous qualitative analysis
[22] in which we reached out to developers whose test files exhibit
a test smell detected by TSDETECT, most of the surveyed developers
confirmed that the test files identified by TsDETECT did contain
instances of bad unit testing programming practices. Additionally,
based on the output of our tool, some of these developers made
necessary corrections to their code based on the findings. Hence, to
ensure that unit tests are of high-quality and maintenance-friendly,
we provide the community with a tool that can be integrated into
the development workflow to automate the identification of bad unit
testing practices early during the system’s development lifecycle.

3 TSDETECT ARCHITECTURE

TSDETECT is implemented as an open-source, command line-based
tool that is available as a standalone Java jar file. By providing

A. Peruma, K. Almalki, C.D. Newman, M.W. Mkaouer, A. Ouni, and F. Palomba

TSDETECT as a self-contained executable file rather than a plugin
(which is part of our future work), users are not required to have a
specific Integrated Development Environment (IDE) installed on
their machine in order to detect smells in their test code. Similar to
other code smell and defect detection tools such as PMD and Find-
Bugs, offering TSDETECT as an executable through the command
line facilitates its integration with modern continuous integration
frameworks, as well as its adoption in mining software repositories
and empirical studies in software engineering.

In addition to the TSDETECT detection mechanism, we incor-
porate supplementary modules to automate the entire detection
workflow. These modules support the detection process by parsing
the input source files to detect unit test files (and their correspond-
ing production files) in the project hierarchy. A high-level overview
of the architecture of TSDETECT is depicted in Figure 1. In ® and @,
the test and production files are identified from the project structure.
In @ and @, TsDEeTECT checks if the test files exhibits test smells. In
®, the results from the test smell detection process are saved. In the
following subsections, we describe the detector and the mechanism
to distinguish test files and their corresponding production files.

A
TSDETECT
:@% CSV
Path to unit‘:®> Assertion | | - oo | Empty Test
Test File test files Roulette g 43/
Detection
Redundant
Lazy Test .
¥ Print

Project
source code

LR

Production Test Smell Detector Modules
File

Detection

JavaParser

tsDetect
results

Figure 1: High-level architecture of TSDETECT

4 TEST SMELL DETECTION

We followed a strategy design pattern in implementing the detection
mechanism for test smells (UML class diagrams are available on the
project website). Each smell is implemented and runs independently
of other smells. The detection strategy of each smell type is self-
contained within its own module. This design pattern also enables
the seamless addition of new smell detectors in the future. Internally,
TSDETECT calls the JavaParser [12] library to parse the source code
files. JavaParser builds an AST from the unit test file that is under
analysis. The AST is then analyzed by each of the available smell
detection modules based on the detection rules defined in Table 1.
Depending on the type of smell being detected, we override the
appropriate visit() method to perform the detection. For example,
in the case of detecting the Redundant Print smell, we first create a
MethodDeclaration visitor to identify all test methods in the class.
Next, for each detected test method, we create a MethodCallExpr
visitor to examine the methods being called within the test method.
Finally, for each called method, we check if the name of the method
matches a Java print method to determine if the file is smelly.

On completion, the results are saved into a Comma-Separated
Values (CSV) file. For each smell type, TSDETECT outputs a boolean
value indicating if the smell is present or not in the file. We decided

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

232

233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

278
279
280
281
282
283
284
285
286
287
288
289

290

TSDETECT: An Open Source Test Smells Detection Tool

Conference’17, July 2017, Washington, DC, USA

Table 1: Summary of the test smell detection rules built-in TSDETECT

Test Smell

Detection Rule

Assertion Roulette
Conditional Test Logic
Constructor Initialization

A test method contains more than one assertion statement without an explanation/message (parameter in the assertion method)
A test method that contains one or more control statements (i.e., if, switch, conditional expression, for, foreach and while statement)
A test class that contains a constructor declaration

Default Test A test class is named either ‘ExampleUnitTest’ or ‘ExamplelnstrumentedTest’

Duplicate Assert A test method that contains more than one assertion statement with the same parameters
Eager Test A test method contains multiple calls to multiple production methods

Empty Test A test method that does not contain a single executable statement

Exception Handling A test method that contains either a throw statement or a catch clause

General Fixture Not all fields instantiated within the setUp method of a test class are utilized by all test methods in the same test class
Ignored Test A test method or class that contains the @ gnore annotation

Lazy Test Multiple test methods calling the same production method

Magic Number Test An assertion method that contains a numeric literal as an argument

Mystery Guest A test method containing object instances of files and databases classes

Redundant Print

Redundant Assertion
Resource Optimism
Sensitive Equality
Sleepy Test
Unknown Test

A test method that invokes either the print or println or printf or write method of the System class

A test method that contains an assertion statement in which the expected and actual parameters are the same

A test method utilizes an instance of a File class without calling the method exists(), isFile() or notExists() methods of the object
A test method invokes the toString() method of an object

A test method that invokes the Thread. sleep() method

A test method that does not contain a single assertion statement and @Test (expected) annotation parameter

on a CSV format for output as this format is technology independent
and permits users to import the data into a database system of their
choice for ease of analysis.

Test File Detection. JUnit recommends that developers follow
the naming convention [13] of either pre-pending or appending the
word ‘Test’ to the name of the production file that is to be tested
(i.e., Test*java and *Test.java). Our tool first identifies all “java’ files
where the filename either starts or ends with the word ‘test’. Next,
for each of the identified Java source files, the tool parses its AST
using JavaParser. The purpose of using the AST is twofold. First,
we are able to eliminate Java files that contain syntax errors, and
secondly, we are able to accurately detect if the file contained JUnit-
based unit test methods. For a file to contain a unit test method, the
method should have a public access modifier, and either has an
annotation called @Test (JUnit 4) or the method name should start
with ‘test’ (JUnit 3).

Production File Detection. In order to detect some test smells,
e.g., Eager Test and Lazy Test, the production file associated with
the unit test file is required. To identify the production file, we
explore the project structure to search for files that have the same
name as the test file, but without the word ‘test’. Next, for each
production file we identified, the tool generates its corresponding
AST to ensure that the file is syntactically correct.

TSDETECT Usage. As a command line tool, tsDetect can be exe-
cuted via the following command:

java -jar .\TestSmellDetector.jar <path_to_test_files>

Once TsDETECT has been started, it requires no further user
intervention. After the detection process is completed, a CSV file
containing the results of the detection process will be created and
returned as output.

5 TSDETECT APPLICABILITY

Practitioners. We envision developers integrating TSDETECT
into their development toolset and workflow. For example, by in-
tegrating it into their build process, developers will be notified of
smells in their test code before either committing the file into the
repository or generating a production release. Furthermore, in our

previous work [22], we reported smells detected by TSDETECT to
120 developers, from various open-source systems. We received
responses from 50 developers, with most developers confirming
that the programming constructs we highlighted in their code are
indeed examples of test smells, and that they will take corrective
actions to fix them.

Researchers. With the capability of batch-based analysis, TsDE-
TECT can be used by researchers in empirical studies on software
quality and maintenance. As previously stated, we have utilized
TSDETECT in empirical studies of open-source systems [22, 26].
Additionally, TSDETECT has also been utilized by the research com-
munity in the study of test smells. Schvarcbacher et al. [29] integrate
TSDETECT into a code quality monitoring system to study reactions
to test smells. Spadini et al. [31] use TSDETECT in their study of
severity rating of test smells and their impact on the maintainability
of test suites. In a study on the evolution of test smells, Kim [14]
uses TSDETECT to show that test smells persist in systems even
though developers refactor the code.

Educators. TSDETECT can also be used by software engineering
educators in the classroom to teach students the importance of
designing high quality, maintenance-friendly test suites. As an
example, TSDETECT is being used as part of an activity in a software
testing course offered by the Department of Software Engineering
at Rochester Institute of Technology!.

6 EVALUATION

We conducted an empirical study on the effectiveness of TSDETECT
in correctly detecting test smells, in terms of precision and recall.
As there are no existing datasets containing information for all the
supported smells, we decided to construct our own validation set.

We start by randomly selecting test files (and their corresponding
production files) from 656 open-source Android apps, hosted on F-
Droid [8]. We ensured that these apps were not duplicated or forked
by verifying the uniqueness of the source URL and commit SHA.
Due to space constraints, we provide the details of these projects
on our website [4]. We then use the definition of test smells to

!https://www.se.rit.edu/

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348

https://www.se.rit.edu/

362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406

Conference’17, July 2017, Washington, DC, USA

identify them in the source files. Upon the identification of smells
in a test file, we tag it along with its corresponding production
file and the types of smells its exhibits. We keep this process of
manually analyzing files and annotating them until we reach 20
infected instances per smell. This process resulted in a total of 65
annotated files.

Next, to ensure an unbiased annotation process, we performed a
manual analysis by involving another set of reviewers to review the
existing annotated set. We involved 39 graduate and undergraduate
students from the Department of Software Engineering at Rochester
Institute of Technology to manually review the same files for the
existence of test smells. All participants volunteered to participate
in the experiment and were familiar with Java programming, unit
testing, and quality assurance concepts. The experience of these
participants with Java development ranged from 2 to 11 years,
which includes exposure to developing unit tests. Prior to the review
process, the participants were provided with a 75-minute tutorial
on test smells along with reference materials. To reduce the effect
of bias, participants were randomly grouped into groups of three,
resulting in a total of 13 groups. Each group was provided with ten
test files. The number of smell types exhibited by each file ranged
from one to six. On average, each file contained three smell types.
However, the participants were not informed of the type or count
of smells contained in their set of test files.

To further protect from bias, we provided each smell type to at
least two groups. Each group was asked to annotate each of the
assigned files with the smell they think it contains. The participants
were offered a period of three days to submit their survey results.
When reviewing the survey results, we noticed two cases from the
same group where there was no agreement about the existence
of a Mystery Guest. There was no consensus between the group
members on whether they should consider a service API call a
guest in part because it is not mentioned in the provided definition.
Therefore, we decided to filter out these two cases, and we replaced
them with two other manually identified mystery guests which
were reviewed again by the group. This process generated a revised
annotated set that we use as our oracle for testing the detection
accuracy. We next ran our tool on the same set of test files and then
compared our results against the oracle. For each smell type, we
constructed a confusion matrix and calculated the precision, recall,
accuracy, and F-Score.

Table 2 reports the detection results for each smell type. As
shown in the table, TSDETECT achieves a high level of correctness
with F-Scores ranging from 87.8% to 100%. For the cases where
the tool did not achieve 100%, we investigate the slight mismatch
between the tool and the human decision. We had only one case
where our tool did not detect a smell, and we had to refine our
detection rule. The other cases were related to the human interpre-
tation of the smell definition, and that is why developers can update
the default rules to better match what they consider as problematic.
The dataset used in this experiment is available on our website [4].

7 RELATED WORK

Research on test smells has proposed test smells, conducted empir-
ical studies on projects related to test smells, and proposed tools

A. Peruma, K. Almalki, C.D. Newman, M.W. Mkaouer, A. Ouni, and F. Palomba

Table 2: Test smell detection correctness of TSDETECT

smell # detected | corrected

Smell Type instances instances Precision Recall F-Score
Assertion Roulette 20 19]18 94.74% 90.00% 92.31%
Conditional Test Logic 20 20 | 20 100% 100% 100%
Constructor Initialization 20 20 | 20 100% 100% 100%
Default Test 20 20|20 100% 100% 100%
Duplicate Assert 20 2118 85.71% 90.00% 87.80%
Eager Test 20 20|20 100% 100% 100%
Empty Test 20 20 | 20 100% 100% 100%
Exception Handling 20 20 | 20 100% 100% 100%
General Fixture 20 21|20 95.24% 100% 97.56%
Ignored Test 20 20 | 20 100% 100% 100%
Lazy Test 20 22|20 90.91% 100% 95.24%
Magic Number Test 20 20 |20 100% 100% 100%
Mystery Guest 20 20|19 95.00% 95.00% 95.00%
Redundant Print 20 20|20 100% 100% 100%
Redundant Assertion 20 23120 85.96% 100% 93.02%
Resource Optimism 20 20|20 100% 100% 100%
Sensitive Equality 20 20 |18 90.00% 90.00% 90.00%
Sleepy Test 20 18 |18 100% 90.00% 94.74%
Unknown Test 20 21118 85.71% 90.00% 87.80%
Average = = 96.01% 97.11% 96.50%

for the detection of test smells. In this section, we focus only on
peer-reviewed studies that are related to test smell detection tools.

Breugelmans et al. [7] built a tool, TEsTQ, which allows develop-
ers to visually explore test suites and quantify test smells. Similarly,
Koochakzadeh et al. [15] built a Java plugin, TECREvIs, for the
visualization of redundant tests. Neukirchen et al. [18] created T-
REx, a tool that detects violations of test cases to the Testing and
Test Control Notation (TTCN-3). In other studies, Greiler et al. [9]
introduced new test smells related to test fixtures and also built a
detection tool, TESTHOUND, as part of their research. In a subse-
quent study [10], the authors extended the tool to mine Git and SVN
repositories for test fixture smells. Reichhart et al. [28] proposed
a tool for the detection of test smells in Smalltalk. Zang et al. [33]
built DTDETECTOR to detect dependent tests. Bavota et al. [6] built
a tool that can detect nine types of test smells, while Palomba et
al. [21] devised a tool for detecting three types of test smells by
means of textual analysis. As described, there exist multiple test
smell detection tools; hence a single tool that can detect a variety
of smells will help with developer productivity.

8 CONCLUSION AND FUTURE WORK

In this paper, we introduced TSDETECT, an open-source tool that
can detect 19 types of test smells occurring in JUnit-based test
suites. We also described the architecture of TSDETECT, the ease of
integrating new smell types into the tool, and its use in research
studies by the community. To evaluate our tool, we conducted a set
of experiments on the soundness of TSDETECT. The results show
that our tool achieves a high performance in terms of F-score with
an average of 96.5% on all the considered test smells types.

Our future work includes improvements/extensions to the tool.
The next step will be to integrate TSDETECT with common IDEs in
the form of a plugin. We aim to extend TSDETECT to new types of
test smells, such as those showing up in the naming practices of
the test. This will leverage existing research on naming practices
[5, 11, 19, 23-25] to study tests and determine when these prac-
tices are smelly. Finally, we encourage the community to download
TSDETECT and contribute to its improvement and extension.

REFERENCES

[1] Checkstyle. https://checkstyle.org/.

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448

449

461
462
463

464

https://checkstyle.org/

465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522

TS
[
[
[
[

[

i
[

3!

3!
[

[
[

[2

DETECT: An Open Source Test Smells Detection Tool

2] Findbugs. http://findbugs.sourceforge.net/.

3] Pmd. https://pmd.github.io/.

4] tsdetect. https://testsmells.github.io/.

5] V. Arnaoudova, M. Di Penta, and G. Antoniol. Linguistic antipatterns: What they
are and how developers perceive them. Empirical Softw. Engg., 21(1):104-158,
Feb. 2016.

6] G.Bavota, A. Qusef, R. Oliveto, A. De Lucia, and D. Binkley. Are test smells really
harmful? an empirical study. Empirical Software Engineering, 20(4):1052-1094,
2015.

7] M. Breugelmans and B. V. Rompaey. Testq: Exploring structural and maintenance
characteristics of unit test suites. In International workshop on advanced software
development tools and Techniques, 2008.

8] F-Droid. https://f-droid.org/.

9] M. Greiler, A. van Deursen, and M.-A. Storey. Automated detection of test fixture
strategies and smells. In International Conference on Software Testing, Verification
and Validation, pages 322-331, 2013.

0] M. Greiler, A. Zaidman, A. v. Deursen, and M.-A. Storey. Strategies for avoiding
text fixture smells during software evolution. In Working Conference on Mining
Software Repositories, pages 387-396, 2013.

1] E. W. Hest and B. M. @stvold. Debugging method names. In Proceedings of the
23rd European Conference on ECOOP 2009 — Object-Oriented Programming, Genoa,
pages 294-317, Berlin, Heidelberg, 2009. Springer-Verlag.

2] JavaParser. https://javaparser.org/.

3] JUnit. FAQ. https://junit.org/junit4/faq.html#running_15/.

4] D.]J. Kim. An empirical study on the evolution of test smell. In Proceedings of the
42nd International Conference on Software Engineering: Companion Proceedings,
ICSE ’20, 2020.

5] N. Koochakzadeh and V. Garousi. Tecrevis: a tool for test coverage and test
redundancy visualization. Testing—Practice and Research Techniques, pages 129—
136, 2010.

6] G. Meszaros. xUnit test patterns: Refactoring test code. Pearson Education, 2007.

7] G. G. Meszaros. Xunit test patterns and smells: Improving the roi of test code.
In International Conference Companion on Object Oriented Programming Systems
Languages and Applications Companion, 2010.

8] H. Neukirchen and M. Bisanz. Utilising code smells to detect quality problems in
tten-3 test suites. Testing of Software and Communicating Systems, pages 228-243,
2007.

9] C.D.Newman, A. Preuma, and R. AlSuhaibani. Modeling the relationship between
identifier name and behavior. In 2019 IEEE International Conference on Software
Maintenance and Evolution (ICSME), pages 376-378, 2019.

0] F.Palomba, G. Bavota, M. Di Penta, F. Fasano, R. Oliveto, and A. De Lucia. On
the diffuseness and the impact on maintainability of code smells: a large scale

[21

[22]

(23]

[24

[25]

[26]

[27

o
&

[29

[30

(31

(32]

[33

Conference’17, July 2017, Washington, DC, USA

empirical investigation. Empirical Software Engineering, 23(3):1188-1221, 2018.
F. Palomba, A. Zaidman, and A. De Lucia. Automatic test smell detection us-
ing information retrieval techniques. In International Conference on Software
Maintenance and Evolution, pages 311-322, 2018.

A. Peruma, K. Almalki, C. D. Newman, M. W. Mkaouer, A. Ouni, and F. Palomba.
On the distribution of test smells in open source android applications: An ex-
ploratory study. In Proceedings of the 29th Annual International Conference on
Computer Science and Software Engineering, CASCON ’19, pages 193-202, River-
ton, NJ, USA, 2019. IBM Corp.

A. Peruma, M. W. Mkaouer, M. J. Decker, and C. D. Newman. An empirical
investigation of how and why developers rename identifiers. In International
Workshop on Refactoring 2018, 2018.

A. Peruma, M. W. Mkaouer, M. J. Decker, and C. D. Newman. Contextualizing
rename decisions using refactorings and commit messages. In Proceedings of
the 19th IEEE International Working Conference on Source Code Analysis and
Manipulation. IEEE, 2019.

A. Peruma, M. W. Mkaouer, M. J. Decker, and C. D. Newman. Contextualizing
rename decisions using refactorings, commit messages, and data types. Journal
of Systems and Software, 169:110704, 2020.

A. Peruma, C. D. Newman, M. W. Mkaouer, A. Ouni, and F. Palomba. An ex-
ploratory study on the refactoring of unit test files in android applications. In
Proceedings of the 4th International Workshop on Refactoring, IWoR 2020, New
York, NY, USA, 2020. Association for Computing Machinery.

R. Pressman. Software Engineering: A Practitioner’s Approach. McGraw-Hill, Inc.,
New York, NY, USA, 7 edition, 2010.

S. Reichhart, T. Girba, and S. Ducasse. Rule-based assessment of test quality.
Journal of Object Technology, 6(9):231-251, 2007.

M. Schvarcbacher, D. Spadini, M. Bruntink, and A. Oprescu. Investigating devel-
oper perception on test smells using better code hub-work in progress. In 2019
Seminar Series on Advanced Techniques and Tools for Software Evolution, SATTOSE
2019, 2019.

D. Spadini, F. Palomba, A. Zaidman, M. Bruntink, and A. Bacchelli. On the relation
of test smells to software code quality. In International Conference on Software
Maintenance and Evolution, pages 1-12, 2018.

D. Spadini, M. Schvarcbacher, A.-M. Oprescu, M. Bruntink, and A. Bacchelli. Inves-

tigating severity thresholds for test smells. In Proceedings of the 17th International
Conference on Mining Software Repositories, MSR 20, 2020.

M. Tufano, F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia, and
D. Poshyvanyk. An empirical investigation into the nature of test smells. In Int.
Conf. on Autom. Software Engineering, pages 4-15, 2016.

S. Zhang, D. Jalali, J. Wuttke, K. Muslu, W. Lam, M. D. Ernst, and D. Notkin.
Empirically revisiting the test independence assumption. In Int. Symposium on
Software Testing and Analysis, pages 385-396, 2014.

523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580

http://findbugs.sourceforge.net/
https://pmd.github.io/
https://testsmells.github.io/
https://f-droid.org/
https://javaparser.org/
https://junit.org/junit4/faq.html#running_15/

	Abstract
	1 Introduction
	2 Background and Motivation
	3 tsDetect Architecture
	4 Test Smell Detection
	5 tsDetect Applicability
	6 Evaluation
	7 Related Work
	8 Conclusion and Future Work
	References

