
Predicting Continuous Integration Build Failures Using
Evolutionary Search

Islem Saidania, Ali Ounia, Moataz Chouchena, Mohamed Wiem Mkaouerb

aETS Montreal, University of Quebec, Montreal, QC, Canada
bRochester Institute of Technology, Rochester, NY, USA

Abstract

Context: Continuous Integration (CI) is a common practice in modern software

development and it is increasingly adopted in the open-source as well as the

software industry markets. CI aims at supporting developers in integrating code

changes constantly and quickly through an automated build process. However,

in such context, the build process is typically time and resource-consuming

which requires a high maintenance effort to avoid build failure.

Objective: The goal of this study is to introduce an automated approach to

cut the expenses of CI build time and provide support tools to developers by

predicting the CI build outcome.

Method: In this paper, we address problem of CI build failure by introducing

a novel search-based approach based on Multi-Objective Genetic Programming

(MOGP) to build a CI build failure prediction model. Our approach aims at

finding the best combination of CI built features and their appropriate threshold

values, based on two conflicting objective functions to deal with both failed and

passed builds.

Results: We evaluated our approach on a benchmark of 56,019 builds from 10

large-scale and long-lived software projects that use the Travis CI build system.

The statistical results reveal that our approach outperforms the state-of-the-art

techniques based on machine learning by providing a better balance between

URL: islem.saidani.1@ens.etsmlt.ca (Islem Saidani), ali.ouni@etsmtl.ca (Ali
Ouni), moataz.chouchen.1@ens.etsmtl.ca (Moataz Chouchen), mwmvse@rit.edu (Mohamed
Wiem Mkaouer)

Preprint submitted to Elsevier LATEX template July 14, 2022

both failed and passed builds. Furthermore, we use the generated prediction

rules to investigate which factors impact the CI build results, and found that

features related to (1) the types of changed files in the current build, (2) last

build information and (3) specific statistics about the project, such as team size,

are the most influential to indicate the potential failure of a given build.

Conclusion: This paper proposes a multi-objective search-based approach

for the the problem of CI build failure prediction. The performances of the mod-

els developed using our MOGP approach were statistically better than models

developed using machine learning techniques. The experimental results show

that our approach can effectively reduce both false negative rate and false pos-

itive rate of CI build failures in highly imbalanced datasets.

Keywords: Continuous Integration, Build Prediction, Multi-Objective

Optimization, Search-Based Software Engineering, Machine Learning

1. Introduction

Continuous integration (CI) [1] is a set of software development practices

that are widely adopted in industry and open source environments [2]. A typical

CI system, such as Travis CI1, advocates to continuously integrate code changes,

introduced by different developers, into a shared repository branch. The key5

to making this possible, according to Fowler [3], is automating the process of

building and testing, which reduces the cost and risk of delivering defective

changes. From the academic side, the study of CI adoption has become an

active research topic and it has already been shown that CI improves developers’

productivity [4], helps to maintain code quality [2] and allows for a higher release10

frequency [5].

However, despite its valuable benefits, CI brings its own challenges. Hilton

et al. [6] revealed that build failure is a major barrier that developers face

when using CI. A build failure, i.e., failing to compile the software into machine

1https://travis-ci.org/

2

https://travis-ci.org/

executable code, represents a blocker that prevents developers from proceeding15

further with development, as it requires an immediate action to resolve it. In

addition, the build resolution may take hours or even days to complete, which

severely affects both, the speed of software development and the productivity

of developers [7]. Such challenges motivated researchers and practitioners to

develop techniques for preemptively detecting when a software state is most20

likely to trigger a failure when built, and thus developers can take the necessary

preventive actions to avoid it.

Existing studies leverage the history of previous build success and failures

in order to train machine learning (ML) models. Such models learn from the

CI builds history and use the domain knowledge to extract features and predict25

the outcome of a given input build. For instance, Foyzul and Wang [8] used

Random Forest (RF), for the binary classification of build outcome, and Ni

and Li [9] adapted the cascaded classifiers to improve the accuracy of CI build

prediction. Although these works have advocated that predicting CI build out-

come is possible and beneficial, none of them accommodated for the imbalanced30

distribution of the successful and failed classes when building their prediction

models. This challenges their applicability due to the performance bias that can

occur when an imbalanced distribution of class examples is used in the learning

process [10, 11, 12]. Hence, the minority class instances, i.e., the failed builds

class in our case, is much more likely to be miss-classified. However, in CI con-35

text, a good accuracy on the failed builds prediction is more important than the

passed builds accuracy. Also, increasing the accuracy of the builds failure class

(known as probability of detection) can result in maximizing also the number

of incorrectly classified failed builds (i.e., false alarms) which makes these two

objectives in conflict [13, 10].40

To deal with the above mentioned challenges, Evolutionary Multi-Objective

Optimisation (EMO) [14, 15, 16, 17, 18] have been found useful for developing

software engineering predictive models [19, 20]. Researchers have advocated

that the use of (EMO) is appropriate because it allows adapting the fitness

function to evolve classifiers with good classification ability across both the mi-45

3

nority and majority classes, e.g., balance between failed and passed builds. This

is accomplished by treating the conflicting objectives independently in the learn-

ing process using the notion of Pareto Dominance. Additionally, to deal with

the imbalanced nature of the dataset, a Multi-Objective Genetic Programming

(MOGP) approach [21], that promotes diversity between solutions equally on50

both minority and majority classes, allows the imbalanced training data to be

used directly in the learning process i.e. without relying on sampling techniques

to re-balance the data [22, 12] which advocates that MOGP approaches are more

suitable for binary classification tasks with imbalanced data [10].

In this paper, we introduce a novel MOGP approach to predict CI build55

outcome. The idea is based on the adaption of the Non-dominated Sorting

Genetic Algorithm (NSGA-II) [23] with a tree-based solution representation, in

order to generate rules from historical data of CI builds using two competing

objectives in the learning process, namely the probability of detection and the

probability of false alarms. As a solution to this binary classification problem,60

a candidate rule is expressed as a combination of metrics and their appropriate

threshold values; and should cover as much as possible the build results from

the base of build results. In a nutshell, our approach takes as input, a given

build, calculates a set a metrics that are fed into our rule, previously generated

using the history of builds, and whose binary output predicts whether the input65

build is most likely to succeed or fail, based on its likelihood to the successful

or failed builds.

To evaluate our approach, we conducted an empirical study on a benchmark

composed of 56,019 build instances from 10 open source projects that use the

Travis CI system, one of the most popular CI systems. We compare our predic-70

tive performance to existing Genetic Programming (GP) algorithms and three

widely-used ML techniques namely Random Forest, Decision Tree and Naive

Bayes. The statistical results reveal that our approach advances the state-of-

the art by outperforming existing prediction models. Moreover, we examine the

most important features, used by our generated rules, in indicating the correct75

CI build outcome, in order to provide the practitioners with useful insights on

4

how to avoid build failures. In summary, the contributions of this work are the

following:

• A novel formulation of the CI build prediction as a multi-objective opti-

mization problem to handle imbalance nature of CI builds as well as to80

achieve a good predictive performance on both classes (passed and failed).

To the best of our knowledge, this is the first attempt to use a search-based

approach for the CI build prediction.

• An empirical study of our MOGP technique compared to different exist-

ing approaches based on a benchmark of 10 large and long-lived projects.85

The obtained results reveal that our proposal is more efficient than ex-

isting techniques with an average of AUC (Area Under The Curve) of

68% compared to 61% achieved by existing ML techniques for which we

applied re-sampling. Additionally, our approach is able to strike a better

balance between both failed and passed builds achieving an improvement90

of at least 15% for the balance metric [24]. These are interesting and ac-

tionable results considering the highly imbalanced nature of the studied

projects with an average failure rate of 19% in the minority class.

• A qualitative evidence of the potential reasons behind build failure through

a novel feature ranking approach. The rules analysis shows that the met-95

rics related to (1) the type of changed files, (2) last build and (3) specific

statistics about the project such as team size are very influential in pre-

dicting CI build failure.

• A comprehensive dataset [25] collected from 10 long-lived software projects,

containing over 56,019 records of build results.100

Replication Package. The comprehensive dataset collected and used in

our study is publicly available in [25] for future replications and extensions.

Also, we provide all details about the validation results available for the research

community.

5

Paper Organization. The remainder of this paper is organized as fol-105

lows. Section 2 provides an overview of the CI build process and the related

work. We present our approach in section 3. Section 4 shows the experimental

setup of our empirical study. Section 5 presents the results and findings of our

studied research questions. Section 6 discusses the implications of our findings

for developers, researchers and tool builders. Section 7 reviews the threats to110

the validity of our results. Finally, Section 8 concludes the paper and outlines

avenues for future work.

2. Background and related work

In this section, we provide an overview of CI and the related work.

2.1. CI Build Process115

CI aims to build healthier software systems by developing and testing in

smaller increments without compromising software quality. The basic notion

of CI, as described by Fowler [3] is to support developers’ work by automating

the code compilation, dependencies collection and tests running. This process

is an enduring check on the quality of contributed code that mitigates the risk120

of “breaking the build” as regressions can be detected and fixed immediately.

CI has a well-defined life-cycle when generating builds. The main phases of

the CI build life-cycle are defined as follows. First of all, a contributor forks, i.e.,

clones, the project repository, makes some changes, as creating a new feature or

by fixing some bugs, on the code base. When the work is done, the contributor125

submits the changes to the original repository. At this point, the CI service

carries out a series of tasks to build and test these changes. Then, it provides

immediate feedback on the outcome of the test to the core team, i.e., developers

who dispose of write access to a project’s code repository [2]. When one or more

of those tasks fail, the build is considered failed, otherwise it will be passed and130

core team members proceed to do a code review and, if necessary, the submitter

would be requested for modifications. After a cycle of code reviews, automatic

6

building and testing, if everyone is satisfied, the submitted changes will be

merged to the mainline branch.

2.2. Related Work135

This section presents the related research about CI builds while highlighting

the contributions of our work.

Prediction of CI builds: Many research works have introduced predic-

tion models to predict the CI build status. Xia and Li [26] compared nine ML

classifiers to construct CI prediction models of 126 open source projects hosted140

on GitHub. Their experiments were based on both cross-validation and online

scenarios. In cross-validation, their models achieved an Area Under the ROC

Curve (AUC) score of over 70%. However, under the online scenario, they ob-

served a tendency for their prediction scores to decrease up to 60% of AUC. In

both scenarios, they found that Decision Tree (DT) and Random Forest (RF)145

achieved the best performance scores. In [8], Foyzul and Wang proposed the pre-

diction model of CI build outcome on three build systems, namely Ant, Maven

and Gradle, under the cross-project prediction and cross-validation scenarios.

Using random forest, they achieved over 90% of AUC scores for the considered

build systems. Additionally, the cross-validation provided better results. How-150

ever, when we looked at the provided dataset, we found that there is a large

amount of redundant lines which may influence the validity of the reported re-

sults. We also found that the dataset is perfectly balanced (45% of failed builds)

which is not in compliance with the real world situation as it is generally known

that failed builds are much less to occur than passed ones [27]. In this paper,155

we found that when applying RF to our generated dataset, our approach can

achieve better results. Xia et al. [28] conducted an empirical study to eval-

uate the predictive performance of six common classifiers including RF, NB

and DT under cross-project validation. For dataset selection, they compared

three methods namely Random Selection, Burak Filter based on build-level and160

Bellwether Strategy based on project-level. According to the results of their

experiments, they found that Bellwether strategy performs better than the two

7

other methods. And among the used classifiers, they found that Decision Tree

(DT) classifier performs the best achieving a score of 17% for F1-measure on

average.165

Although most of the existing approach achieved good results by using va-

riety of domain knowledge and historical information the of CI builds, none of

these works actually construct the prediction model that perfectly fits the im-

balance in build outcomes characteristics of the CI build outcome which chal-

lenges their applicability. Additionally, the predictive performance of the used170

techniques like RF, depends highly on the used features, the dataset representa-

tiveness and the failure rate which may explain the differences in the obtained

results.

Insights into CI builds: The analysis of CI build failures is growing

as an active and challenging topic for software engineering research. Rausch175

et al. [29] investigated the impacts that can affect build failures on Travis

CI. They observed by analyzing build logs that the most common reasons for

build failures are failing integration tests, code quality measures being below a

required threshold, and compilation errors. Beller et al. [30] focused on testing

with an in-depth analysis of CI builds. The main finding of their study is that180

59% of build failures occur during test phase for Java projects. Luo et.al [31]

proposed a case study to investigate what features have greater impact on the

build result. Conducting a case study on the TravisTorrent dataset, they found

that the total number of commits in a build is the main influence feature that

causes build failure. The number of files changed and the density of tests also185

impact a lot. In this paper, we conduct a deep analysis to investigate the most

influencing factors of build outcome using our proper generated rules.

Other Studies About CI Builds Atchison et al. [32] conducted a time-

series analysis of the history of CI builds to identify temporal patterns in build

volume within TravisTorrent dataset [33]. By observing a clear seasonality in190

build activity, their approach was able to estimate the number of builds to be

generated in the future, with an average accuracy of 86%. Another interesting

study was conducted by Ghaleb et al. [34] to analyse the long duration of builds

8

over 67 GitHub projects that are linked with Travis CI. The main finding of their

study is that about 40% of builds take over 30 minutes to run which points to195

the high energy cost of CI builds that increases as the build duration increases.

3. Search-based Prediction of CI build failure

In this section, we describe our approach that uses multi-objective GP based

on an adaptation of NSGA-II.

3.1. Approach Overview200

Figure 1 provides an overview of our proposed approach to generate rules

for CI builds outcome prediction. In our study, we start from the observation

that it is more beneficial for CI developers to identify good practices to follow

in order to avoid build failures rather than simply detecting whether the build

will succeed or fail. Thus, the goal of the proposed approach is to generate205

a set of rules, as a combination of CI-related metrics extracted from various

sets of information about CI builds. As described in Figure 1, the first step

of our approach consists of collecting a set of examples of build results (failed

and succeeded builds) information based CI-related (cf. Section 3.3). Then,

in the second step, we take these inputs to generate a set of predictive rules210

that predict as much as possible the CI builds outcome with high accuracy.

The multi-objective GP algorithm is the key element of our approach. First, it

starts by generating a set of solutions. Every solution is composed of a set of

prediction rules i.e., combination of threshold values assigned to each metric.

These combination of metrics-thresholds are connected with logical operators.215

All the generated solutions in the population are evaluated using two objectives

to (1) maximize the true positive rate, and (2) minimize the false positive rate.

Change operators are applied, at every iteration, to generate new solutions.

After repeating this process until reaching a stop criteria, the best solution is

returned by the algorithm.220

9

./imgs/approach3.pdf

Figure 1: An overview of our approach.

3.2. NSGA-II adaptation

In this section, we describe in details our search-based approach. We first

provide an overview of NSGA-II and then we define how we adapt it to our

build failure prediction problem.

3.2.1. NSGA-II overview225

We employed a widely used computational search technique, NSGA-II [35]

that has proven good performance in solving many software engineering prob-

lems [14, 36, 37, 38]. As described in Algorithm 1, NSGA-II starts by randomly

creating an initial population P0 of individuals encoded using a specific repre-

sentation (line 1). Then, a child population Q0 is generated from the population230

of parents P0 (line 2) using genetic operators (crossover and mutation). Both

populations are merged into an initial population R0 of size N (line 5). Fast-

10

non-dominated-sort [23] is the technique used by MOGP to classify individual

solutions into different dominance levels (line 6) [23]. The whole population that

contains N individuals (solutions) is sorted using the dominance principle into235

several fronts (line 6). Solutions on the first Pareto-front F0 get assigned domi-

nance level of 0. Then, after taking these solutions out, fast-non-dominated-sort

calculates the Pareto-front F1 of the remaining population; solutions on this

second front get assigned dominance level of 1, and so on. Fronts are added

successively until the parent population Pt+1 is filled with N solutions (line 8).240

When MOGP has to cut off a front Fi and select a subset of individual solutions

with the same dominance level, it relies on the crowding distance [23] to make

the selection (line 9). This parameter is used to promote diversity within the

population. The front Fi to be split, is sorted in descending order (line 13), and

the first (N- |Pt+1|) elements of Fi are chosen (line 14). Then, a new population245

Qt+1 is created using selection, crossover and mutation (line 15). This process

will be repeated until reaching the last iteration according to a stop criteria

(line 4).

3.2.2. Adaptation

The following three subsections describe more precisely our adaption of GP250

to the CI build failure problem.

i. Solution/Individual representation: Our adaptation to the NSGA-

II algorithm is to adopt it with the generic model of GP learning to the space

of programs. Unlike other evolutionary search algorithms, in GP, solutions

are themselves programs following a tree-like representation instead of fixed255

length linear string formed from a limited alphabet of symbols [39]. For the

build failures prediction problem, a candidate solution, i.e., a prediction rule, is

represented as an IF – THEN clause with the following template:

IF (Combination of metrics and their thresholds) THEN RESULT.

The IF clause describes the conditions under which a build is said to be suc-260

ceeded or failed. The condition corresponds to a logical expression that combines

11

Algorithm 1 High level pseudo code of the adopted NSGA-II

1: Create an initial population P0

2: Create an offspring population Q0

3: t = 0

4: while stopping criteria not reached do

5: Rt = Pt ∪Qt

6: F = fast-non-dominated-sort(Rt)

7: Pt+1 = ∅ and i = 1

8: while | Pt+1 | + | Fi |6 N do

9: Apply crowding-distance-assignment(Fi)

10: Pt+1 = Pt+1 ∪ Fi

11: i = i + 1

12: end while

13: Sort(Fi,≺ n)

14: Pt+1 = Pt+1 ∪ Fi[N− | Pt+1 |]

15: Qt+1 = create-new-pop(Pt+1)

16: t = t+1

17: end while

some metrics and their threshold values using logical operators (OR, AND). A

solution is encoded as a tree where each terminal belongs to the set of metrics

described in Table 1 and their corresponding thresholds are generated randomly.

Each internal-node belongs to the connective set C = {AND, OR}. Figure 2265

shows an illustrative example of a solution. This rule predicts the build failure

in case the fail rate history is greater than 0.6 and the files added are higher

than or equal to 5 and the team size is higher than or equals to 20.

IF proj fail rate history > 0.6 AND team size ≥ 20 AND

gh diff files added ≥ 5 THEN Failure.

ii. Generation of an initial population: To generate an initial popu-270

lation composed of n solutions, we start by defining the maximum tree length

(should not exceed a predefined threshold). The actual tree length will vary

with the number of metrics to use for failure prediction that vary from 1 to 33

12

./imgs/exp_rule.pdf

Figure 2: A simplified example of solution encoding for CI build failure prediction.

(the number of considered metrics, cf. Table 1). Notice that a high tree length

value does not necessarily mean that the results are more precise since, usually,275

only a few metrics are needed to predict the failure. Because the individuals

will evolve with different tree lengths (structures), with the root (head) of the

trees unchanged, we randomly assign for each one:

• One metric and threshold value to each leaf node. The threshold values

are ranged between lower and upper bounds of the metric in question280

(e.g., if the number of team sizes is between 1 and 10, the threshold will

be randomly selected according this metric distribution). These upper

bounds are fixed based on the training set. We also assign a mathe-

matical operator (≥,≤,=) that depends on the metric category. Note

that “=” is only used for categorical metrics (e.g., gh is pr), ≥ and ≤285

are applied only with continuous (e.g., committer fail history) or discrete

metrics (e.g., gh team size).

13

• A logic operator (AND, OR) to each function node.

It is worth to mention that during individual generation or evolution, the

infeasible rules that contain nodes with the a condition and its negation in the290

same sub-tree like for example “gh is pr = 1 AND gh is pr = 0 ” are automati-

cally rejected.

iii. Genetic operators: Crossover and mutation are defined as follows.

Crossover: is used to combine the genetic information of two parents. In

this adaptation, we use single-point crossover operator. A sub-tree is extracted295

from each parent. Then, the crossover operator exchanges the nodes and their

relative sub-trees between parents. Figure 3 shows an example of the crossover

process. In fact, two parent solutions, namely P1 and P2, are combined to

generate two new child solutions. The right sub-tree of P1 is swapped with the

left sub-tree of P2. For example, after applying the crossover operator the new300

rule C2 to predict build failure will be:

IF gh is pr = 1 OR gh diff files added ≥ 5 THEN Failure.

Mutation: it can be applied either to a function node or a terminal node. In

this problem, the mutation operator first randomly selects a node in a randomly

selected tree. Then, if the selected node is a terminal, it is replaced by another305

terminal (metric or another threshold value). If the selected node is a function

(logical operators), it is replaced by a new function (e.g., OR becomes AND).

Then, the node and its sub-tree are replaced by a new randomly generated

sub-tree. To illustrate the mutation process, consider again the example that

corresponds to a candidate rule to predict CI build failure. Figure 4 illustrates310

the effect of a mutation that deletes the note containing proj fail rate history

feature, leading to the automatic deletion of node AND (no left sub-tree). Thus,

after applying the mutation operator the new rule will be:

IF team size ≥ 20 OR gh diff files added ≥ 5 THEN Failure.

iii. Multi-criteria solution evaluation (fitness function): An appro-315

priate fitness function should be defined to evaluate how good is a candidate

14

cross.pdf

Figure 3: An example of crossover operator.

solution. According to Harman and Clark [40], search-based algorithms used

from prediction can use performance measures to identify better solutions in the

search process. To evaluate the fitness of each solution, we use two objective

functions to be optimized, based on two well-known metrics, the true positive320

rate and false positive rates [13]:

• (1) Maximize the probability of detection (PD), also known as the True

Positive Rate (TPR). PD is an indicator of the percentage of builds that

are correctly classified as failed. The higher the value of PD, the better is

15

mut.pdf

Figure 4: An example of mutation operator.

the solution.

PD =
TP

TP + FN
× 100

where TP and FN are the number of true positives and the number of

false positives, respectively.

• (2) Minimize the False Positive Rate (FPR), also known as probability

of false alarm (FP), which is the ratio of false positives (i.e. incorrectly

classified failed builds) to the actual number of passed builds. The lower

the value of PF, the better is the solution.

PF =
FP

FP + TN
× 100

where FP and TN are the number of false positives and the number of

true negatives, respectively.325

iv. Pareto-front selection: Multi-objective algorithms such as NSGA-II

do not produce a single solution like GA, but a set of non-dominated solutions

called Pareto-optimal solutions. These solutions provide a trade-off between the

16

prediction accuracy of both failed and passed build classes. In the CI built pre-

diction problem, the best solutions are those who represent the Pareto-front that330

maximize the TPR and minimize the FPR. Hence a solution is chosen based on

its preferences in terms of trade-off. To this end, and in order to fully automate

our approach, we extract a single default best solution from the returned set

of solutions. Since in our case the ideal solution (True Pareto) has the best

TPR value (equals to 1) and the best FPR value (equals to 0), we select the335

nearest solution to the ideal one in terms of Euclidean distance. The following

equation is used to choose the solution (noted BestSol) that corresponds of the

best compromise between TPR and FPR:

BestSol =
n

min
i=1

√
(1− TPR[i])2 + FPR[i]2

where n is the number of solutions in the Pareto front returned by NSGA-II.

3.3. Dataset and CI-related Metrics340

To collect our data, we use TravisTorrent [33], which is a publicly available

dataset that contains information about Travis-CI builds of several projects

hosted in GitHub. By combining the data from Travis-CI and GitHub, detailed

features, i.e., metrics can be extracted and used for predictions [28, 9, 26, 31, 27].

Table 1 lists the build metrics used to generate our prediction rules. Besides the345

existing TravisTorrent features (marked as T in the third column), we also gen-

erated other features marked as G which were extracted from existing research.

During feature selection, we considered 10 categories described as follows:

• Change size. These features measure how the change made is distributed

across the different aspects, including the commits and code.350

• Files change. These features compute the changes (deletion, addition or

modification) at the file level.

• Cooperation. These metrics estimate the level of cooperation in terms

of comments and code revisions.

17

• Triggering Commit. In this group, we collect some information about355

the commit that triggered the build, to know whether the build is managed

by a core member or as part of pull requests which may increase the risk

of breaking the build. We are also interested in collecting other temporal

factors such as the day of the week.

• Change Type. In this group, we count different types of files changed in360

built commits using file extensions. The changes may be related to source,

documentation, configuration or other files.

• Test Change. These features measure the test changes which represent

additional indicators on the quality of the build code.

• Link to last build. This set of features estimates the project’s stability365

which may lead to a better prediction.

• Committer experience. These metrics estimate the committer experi-

ence related mainly to the number of passed/failed builds that may reflect

her/his level of experience.

• Project statistics. This group of features captures some additional in-370

formation about the committer and the project experience which may

indicate the quality of the current build.

• Test Density. This set of features is dedicated to estimate the project

familiarity with testing, one of the core goals of CI [3].

By using these metrics, we collected a total of 56,019 records of build results.375

However, it is worth mentioning that some builds were filtered out from the orig-

inal dataset since no information about the last build was found. Additionally,

since TravisTorrent dataset organizes the build results at the job level, we ag-

gregate the results of all jobs related to a build and provide one outcome using

the build identifier in the TravisTorrent dataset. This is required to avoid bias-380

ing our results due to duplicated builds. Also, we eliminated builds that have

a status of “Error” or “Cancel” from our dataset since we only focus on builds

18

that have a “pass” or “fail” status. For a broader public for reproducibility and

extension, we provide our data available [25].

4. Validation385

In this section, we report the results of a large-scale empirical study on

a benchmark of 56,019 build instances. The comprehensive dataset collected

and used in our study is publicly available in [25] for future replications and

extensions.

./imgs/validation.pdf

Figure 5: Experimental design

19

Table 1: CI-related Metrics extracted from literature

Category Metric Source Description Reference

Change

size

git num all built commits T # of commits contained in this single build [28],[9],[26],[31],[27]

gh num commits on files touched T # of unique commits on the files touched in the built commits [26],[31]

git diff src churn T # of lines of code changed in all built commits [26],[31],[8],[27]

Files

change

gh diff files added T # of files added in all built commits [28],[9],[26],[31]

gh diff files deleted T # of files deleted by all built commits [28],[26],[31]

gh diff files modified T # of files modified by all built commits [28],[9],[26],[31]

Cooperation

gh num commit comments T # of comments of all built commits [28],[26],[31]

num of distinct authors T # of distinct authors in all built commits [28],[27]

Total Number Of Revisions G # of revisions on all the files touched by the current build [27]

Triggering

commit

gh by core team member T
Whether the commit that has triggered the build was authored

by a core team member
[26],[31]

gh is pr T Whether this build was triggered as part of a pull request on GitHub. [31]

day week G Day of week of the first commit for the build [8]

Change

type

gh diff src files T # of src files changed by all built commits [28],[26]

gh diff doc files T # of documentation files changed by all built commits [28],[26],[31]

gh diff other files T # of files which are neither source code nor documentation. [28],[26],[31]

num config files G # of configuration files (*.xml, *.yml, etc) edited in this commit. [9],[8],[41]

Test

Change

git diff test churn T # of lines of test code changed in all built commits [28],[26],[31] ,[8]

gh diff tests added T # of test cases added in all built commits [26],[31]

gh diff tests deleted T # of test cases deleted in all built commits [26],[31]

Link to

last build

prev built result G Result of last build [9], [8],[27]

same committer T Indicates whether the committer is the same as last build [9]

elapsed days last build T Counts the days since last build [9]

git prev commit resolution status T = it could be “build found”, “merge found” or “no previous build” [26],[31]

Committer

Experience

committer fail history G The fail rate of the builds by the current committer in the past [9]

committer fail recent G Similar to committer history, but measuring only his last five builds [9]

committers avg exp G
The average number of builds the committers made in the project

before this build
[9]

Project

History

project fail history G The fail rate of the all the project’s previous build [9]

project fail recent G Similar to project fail history but using only last five builds [9]

gh team size T
of developers that committed from the moment the build was

triggered and 3 months back.
[26],[31],[8]

gh sloc T
of source lines of code, in the entire repository

at the time of this build.
[28],[26],[31],[27]

Test

Density

gh test lines per kloc T # of lines in test cases per 1000 gh sloc. [26],[31]

gh test cases per kloc T # of test cases per 1000 gh sloc. [26],[31]

gh asserts cases per kloc T # of assertions per 1000 gh sloc. [28],[26],[31]

T: TravisTorrent, G: Generated

20

Figure 5 provides an overview of our experimental design used in the vali-390

dation of our approach. First, we evaluate our predictive performance against

existing approaches in the two first questions. At this step, we run search-based

algorithms and non deterministic ML techniques used in this empirical study

31 times to deal with the stochastic nature of these algorithms. To validate

the predictive performance, we consider online validation [26]. Next step in this395

validation is related to a qualitative study of the most important metrics to

indicate CI build outcome. In the following, we describe each step in detail.

4.1. Research Questions

We designed our experiments to answer three research questions:

• RQ1. (SBSE validation). How does the proposed NSGA-II perform400

compared to Random Search (RS), mono-objective algorithm (GA) and

other Multi-Objective algorithms?

• RQ2. (Performance evaluation with ML). How does our approach

perform compared to ML techniques?

• RQ3. (Features analysis). What features are most important to pre-405

dict CI build failures?

4.2. Analysis method

4.2.1. Prediction performance

The first goal of our empirical study is to evaluate the performance of our

approach for the CI build failure prediction problem compared to existing tech-410

niques (RQ1+RQ2).

RQ1 is a “standard” question asked in any Search-Based Software Engineer-

ing (SBSE) formulation [42]. First, we compare our SBSE formulation against

Random Search (RS) [36, 43] is the simplest form of search algorithms. It may

fail to find optimal solutions that occupy small proportion of the overall search415

as it is unguided without efficient use of genetic operators [36]. In this RQ, we

aim in the first place as a sanity check to evaluate the need for an intelligent

21

method such as NSGA-II that can outperform RS. In addition, it is important

also to determine if considering separate conflicting objectives to be optimized

(multi-objective) is an appropriate formulation compared to aggregating them420

in a single objective. Hence, we compared NSGA-II to mono-objective GP where

a single fitness function, Fit(mono), is used. Fit(mono) is defined as follows:

Fit(mono) =
PD + (1− PF)

2
(1)

In order, to make our results comparable, we compute the well-known eval-

uation metric Area Under the ROC Curve (AUC). This measure indicates how

much a prediction model/rule is capable of distinguishing between classes. A425

larger AUC value indicates better prediction performance. For binary classifi-

cation, AUC is defined as follows [44]:

AUC =
1 + PD

100 −
PF
100

2
∈ [0, 1] (2)

Moreover, it is important to account for imbalance in a data set. Indeed,

various researchers [45, 46, 24] advocate the use of the balance metric to assess

the performance of models that were initially trained using imbalanced training430

data. Balance measure computes the euclidean distance between the optimum

couple (PD=100, PF=0) to a specific pair of (PD, PF) [46]. Higher balances

are desirable for a model. The balance metric is defined as follows.

Balance = 1 −

√
(0− PF

100)2 ∗ (1− PD
100)2

2
∈ [0, 1] (3)

The main merit of the AUC and balance is their robustness toward imbal-

anced data.435

4.2.2. Algorithms performance

We evaluate the performance of NSGA-II over other MOEAs to identify the

most effective algorithm to solve CI prediction problem. Thus, we compare our

approach with NSGA-III [35], Indicator-Based Evolutionary Algorithm (IBEA)

[47] and Strength-Pareto Evolutionary Algorithm (SPEA2) [48], as they are440

22

among the most popular MOEAs and have been widely utilized in SBSE [14,

14, 49, 37]. Additionally, all the search-based algorithms used in this paper are

implemented using the MOEA framework [50], an open source framework for

developing and experimenting with MOEAs [51].

Since the underlying goal of MOEAs is to determine a set of alternative solu-445

tions known as Pareto front approximations [51], we aim to compare, based on

the testing test, these algorithms using well-known performance metrics based

on previous surveys [52], including:

• Hyper-volume (HV): calculates the volume of the space dominated by

all the solutions. A larger HV value indicates better performance.450

• Spacing (SP): measures the uniformity of spacing between solutions,i.e.,

the average distance between solutions in the Pareto front. Higher SP

value is desirable for the MOEA.

• Generational Distance (GD): measures the average distance between

each Pareto front solution and the true Pareto front. Smaller is GD, better455

is the MOEA.

These indicators are automatically computed, on the testing set, using the

MOEA Framework tool which provides the statistical analysis and displays the

minimum, median and maximum values of each performance indicator.

To answer RQ2, we compare the prediction performance of NSGA-II with460

three widely-used ML techniques in previous CI and software engineering re-

search [28, 53, 26, 31, 8, 53, 41], namely Decision Tree (DT), Random Forest

(RF) and Naive Bayesian (NB). We use both prediction metrics, balance and

AUC, as described for RQ1.

ML preprocessing: First, data scaling is performed in order to standard-465

ize the range of variables. Then we rely on Synthetic Minority Oversampling

Technique (SMOTE) method [54], to re-sample the training data. Note, that we

did not re-sample the testing dataset since we want to evaluate ML techniques

in a real-life scenario, where the data is imbalanced.

23

Validation scenario: We conduct an online validation in which builds are470

ordered and predicted chronologically. Similar to prior work [26], we ranked

for each selected project, the builds according to its start time and broke the

whole set of a given project into ten folds. Then, we used the latter five folds as

testing sets: At each iteration i (1 ≤ i ≤ 5), the test set fold j (6 ≤ j ≤ 10), the

former j-1 folds were selected as training set to train the model. It is worthy to475

mention, that we verified for each project and validation iteration, the existence

of failed builds. To get more details about the failure rate in each validation

iteration, please consider our replication package [25].

4.2.3. Feature Ranking

The goal of RQ3 is to analyze the factors influencing build failures which will480

be valuable for developers to prevent potential build failures in their projects.

While existing research works [29, 30, 31] attempted to give insights into CI build

failure by applying correlation analysis to discover the relationship between the

selected features and the build outcome. In this paper, we address this problem

by exploring the interpretable knowledge provided by our generated rules. Since485

we use online validation, the analysis produces 5 rules for each project. Thus, the

same feature may occur multiple times in the near-optimal rules. The higher

the number of occurrences of a feature, the more important is the feature in

identifying failed builds. In addition, to give a more general view, we aggregate

the results of features ranking for each project and feature category (cf. Section490

3.3).

4.3. Subjects Selection

Our experiments were based on TravisTorrent dataset, from which we se-

lected top-10 Java and Ruby projects according to the number of build records

(after removing inadequate rows as described in Section 3.3). An overview about495

the studied projects is reported in in Table 2. It is noteworthy that the data

in all these projects is highly imbalanced. Our replication package is publicly

available at [25].

24

Table 2: Studies projects statistics.

Project Name Language # of Builds
Failure

Rate

Age at CI

(days)

CloudifySource/cloudify java 4,568 0.25 220

gradle/gradle java 3,822 0.08 1,833

Graylog2/graylog2-server java 3,341 0.12 470

mitchellh/vagrant ruby 3,569 0.14 765

openMF/mifosx java 2,252 0.07 2

opf/openproject ruby 5,913 0.35 287

rails/rails ruby 11,732 0.30 2,354

rapid7/metasploit-framework ruby 6,391 0.07 2,571

ruby/ruby ruby 11,814 0.21 5,099

SonarSource/sonarqube java 2,317 0.24 1,013

Average − 5,602 0.19 1,461

Cloudify2 is is a cloud-enablement platform that on-boards applications to

public and private clouds without architectural or code changes. Gradle3 is a500

popular build tool with a focus on build automation and support for multi-

language development. It offers a flexible model that can support the entire

development lifecycle from compiling and packaging code to publishing web

sites. Graylog2-server4 is an open source log management system that centrally

captures, stores, and enables real-time search and log analysis against terabytes505

of machine data from different component in the IT infrastructure. Vagrant5

is a tool for building and distributing development environments that provides

easy workflow for developers and leverages a declarative configuration file which

describes all software requirements, packages, operating system configuration,

users, and so on. Mifosx6 is an open technology platform for financial inclusion510

2https://github.com/CloudifySource/cloudify
3https://github.com/gradle/gradle
4https://github.com/Graylog2/graylog2-server
5https://github.com/hashicorp/vagrant
6https://github.com/openMF/mifosx

25

https://github.com/CloudifySource/cloudify
https://github.com/gradle/gradle
https://github.com/Graylog2/graylog2-server
https://github.com/hashicorp/vagrant
https://github.com/openMF/mifosx

that provides core functionalities to deliver financial services. OpenProject7 is

one of the leading open source web-based project management systems. Rails8

is a web application framework that provides several features needed to cre-

ate database-backed web applications according to the Model-View-Controller

(MVC) pattern. Metasploit9 is a penetration testing platform that enables to515

write, test, and execute exploit code with a suite of tools to test security vulner-

abilities, enumerate networks, execute attacks, and evade detection. Ruby10 is

an interpreted object-oriented programming language often used for web devel-

opment. Finally, SonarQube11 is a platform for continuous inspection of code

quality to perform automatic reviews with static analysis of code to detect bugs,520

code smells, and security vulnerabilities on several programming languages.

4.4. Inferential Statistical Test methods Used

When applied to the same problem instance, search-based algorithms, DT

and RF techniques may provide different results on each run. To deal with

this stochastic nature, it is important to assess their effectiveness by performing525

a large number of runs, at least 30 runs as suggested in [55]. In addition, it

is also essential to use the statistical tests that provide support for/rejection

of the conclusions derived by analyzing the obtained results. In this paper, we

employ Wilcoxon signed rank test [56] in order to detect significant performance

differences between the algorithms under comparison (α is set at 0.05). In this530

validation, each iteration is repeated 31 times, for each algorithm and each

project. It is worth mentioning that for RQ3, we choose the rule with the

median value through 31 runs of each iteration.

We also use the Cliff’s delta, δ, a non-parametric effect size measure for

ordinal data [57] to assess the difference magnitude. The effect size is considered535

7https://github.com/opf/openproject
8https://github.com/rails/rails
9https://github.com/rapid7/metasploit-framework

10https://github.com/ruby/ruby
11https://github.com/SonarSource/sonarqube

26

https://github.com/opf/openproject
https://github.com/rails/rails
https://github.com/rapid7/metasploit-framework
https://github.com/ruby/ruby
https://github.com/SonarSource/sonarqube

negligible when | δ |< 0.147, small when 0.147 ≤| δ |< 0.33, medium when

0.33 ≤| δ |< 0.474 and large otherwise [58].

4.5. Parameter Tuning and Setting

First, we investigated a number of calibration of different parameters in

order to effectively set the parameters of each technique used in the study. To540

facilitate the replication of our results, we report in Table 3 our algorithmic

parameter tuning. The initial populations of all the search-based algorithms

were randomly generated. The process is stopped when the maximum number

of generations is reached. The maximum depth of the tree (i.e., rules) is fixed

to 10.545

Table 3: Algorithms parameters

Algorithms Parameters Values

NSGA-II, NSGA-III

IBEA, SPEA2, GA, RS

Population size

Maximum number of generations

Maximum depth of the tree

Crossover probability *

Mutation probability *

100

500

10

0.9

0.1

RF
Maximum depth of the tree

Number of estimators

10

200

DT Maximum depth of the tree 10

NB Used NB classifier Gaussian naive Bayes

* Not applied to RS

The three ML techniques analyzed in the study are DT, RF and NB. The

parameter settings for DT method include maximum depth of 10. RF’s parame-

ter setting involves using a maximum tree depth of 10 and number of estimators

of 200. For NB classifier selection, we use Gaussian Naive Bayesian [59] as the

majority of the handled data is continuous.550

27

5. Experimental results

This section presents the experimental results obtained for RQ1-3.

5.1. RQ1. Results for GP comparison

As shown in Figure 6, over 31 runs (of each project and each validation

iteration), both mono-objective algorithms achieved in median a score of 51%555

in terms of balance, while GA was slightly better in terms of AUC with a

score of 62% compared to 60% achieved by RS. We clearly see that MOEAs

outperformed RS as well as GA by an increase of 6% and 16% in terms of

AUC and balance respectively. Additionally, the Wilcoxon test results showed

that over 1,550 experiment instances (5 iterations x 31 runs x 10 projects),560

MOEAs were significantly better than GA and RS, with a large Cliff’s delta

effect size. This provides evidence that the use of multi-objective formulation

for the prediction problem is more suited as it can provide a better compromise

between PD and PF.

./imgs/GP_auc.pdf

(a) AUC

./imgs/GP_bal.pdf

(b) Balance

Figure 6: Results of the search algorithms for the 1,550 experiment instances (31 runs, 5

validation iterations, 10 projects).

Next, we compare the performance of the different MOEAs. Table 4 shows565

28

the results of MOEAs comparisons based on the hyper-volume (HV), Gener-

ational Distance (GD) and Spacing (SP) as described in Section 4.2.1. The

experiment shows that, in median, NSGA-II achieves better scores for HV, GD

and SP. For example, NSGA-II achieved a median score of 0.92 in terms of

HV, while the other algorithms achieved 0.64 which means that NSGA-II is570

better to cover the volume of the space dominated by its solutions. In terms

of GD, NSGA-II is also better to achieve a closer distance between its Pareto

front solutions and the true Pareto front with a score of 0.01 compared to 0.19

for NSGA-III, SPEA2 and IBEA. Regarding SP, the median scores are barely

distinguishable between all the algorithms, so they achieve a similar spacing575

between the generated solutions.

Although, the scores are not significantly different, we observe that over-

all, NSGA-II provides the highest average performance among the compared

MOEAs, which motivates our choice to use it as a search method.

Table 4: Performance metrics achieved by each of the MOEAs in terms of hyper-volume (HV),

generational distance (GD), and spacing (SP).

NSGA-II SPEA2 NSGA-III IBEA

HV 0.92 0.64 0.64 0.64

GD 0.01 0.19 0.19 0.19

SP 0.06 0.05 0.05 0.05

5.2. RQ2. Results for comparison with ML580

Figures 7 and 8 show the boxplots comparing the results of all the executed

experiments iterations to compare NSGA-II with ML algorithms (DT, NB, and

RF) in each studied project. Table 5 reports the average (of 5 online validation

iterations) balance and AUC scores as well as the statistical comparisons of

these experiments. Note that NSGA-II, RF and DT were executed 31 times to585

deal with their stochastic nature. Then we computed the median values of each

29

experiment. Also, in the figures, the horizontal black lines indicate the average

values of the corresponding scores.

Table 5: Performance of NSGA-II vs ML techniques.

AUC Balance

Project
NSGA-II DT RF NB NSGA-II DT RF NB

cloudify 0.66 0.52 0.63 0.56 0.62 0.37 0.50 0.41

gradle 0.68 0.53 0.61 0.61 0.67 0.44 0.50 0.54

graylog2-server 0.70 0.56 0.56 0.58 0.67 0.44 0.41 0.46

metasploit-framework 0.67 0.46 0.61 0.47 0.66 0.38 0.56 0.32

mifosx 0.76 0.60 0.67 0.46 0.75 0.49 0.59 0.36

openproject 0.63 0.52 0.54 0.53 0.61 0.48 0.44 0.47

rails 0.60 0.53 0.58 0.60 0.58 0.45 0.47 0.50

ruby 0.72 0.60 0.72 0.50 0.72 0.55 0.69 0.31

sonarqube 0.65 0.57 0.58 0.54 0.64 0.49 0.48 0.45

vagrant 0.77 0.65 0.69 0.63 0.76 0.56 0.61 0.59

Median 0.68 0.54 0.61 0.55 0.67 0.46 0.50 0.46

Average 0.68 0.55 0.62 0.55 0.67 0.46 0.52 0.44

Statistical

Test

o+++

oLML

+o+-

LoLN

++o+

MLoM

+-+o

LNMo

o+++

oLLL

+o+-

LoSN

++o+

LSoM

+-+o

LNMo

A “+” symbol at the ith position means that the algorithm balance/AUC median value is statistically

different from the ith algorithm one; while a “-” symbol at the ith position means the opposite. A “o” symbol

refers to the current position of the algorithm. Effect size: L: Large, M: Medium, S: Small, N: Negligible.

For instance, DT balance is statistically different from NSGA-II and RF, however, it is not statistically

different from NB.

As we can see, our NSGA-II technique achieves an average AUC of 68% and

an average balance of 67%. Although the achieved results may seem modest590

performance numbers, they are quite significant given the high imbalanced na-

ture of the data (i.e., only a small portion of the builds are failed) as can be

noticed from Table 2. Moreover, we see from Table 5 that for the 10 studied

projects, the best AUC and balance values were achieved by the NSGA-II al-

gorithm. On the other hand, for the different projects, the statistical analysis595

provide evidence that our approach performs better than the ML techniques

with a large Cliff’s delta effect size compared to DT and NB for balance and

AUC values. On another hand, the Cliff’s delta test reveals a medium and large

effect sizes in terms of AUC and balance respectively compared to RF.

30

For instance, in the Graylog2/graylog2-server project in which the num-600

ber of failed builds represent only 12%, our approach achieved 70% in terms of

AUC compared to 58% for NB, 56% for both DT and RF which represents an

improvement of 12% over ML. Also, in mitchellh/vagrant project, in which we

obtained the best results, our approach outperforms ML techniques by achiev-

ing 77% in terms of AUC compared to 63%, 65% and 69% for NB, DT and RF,605

respectively.

Based on these results, we can conjecture that NSGA-II performs better in

comparison with ML techniques even without need for features scaling or re-

lying on any re-sampling technique. This could be justified by the fact that

NSGA-II had a better trade-off (i.e., balance and AUC) between both posi-610

tive (i.e., failed) and negative (i.e., passed) accuracies, which indicates that our

approach is advantageous over ML when developing prediction rules for imbal-

anced datasets. Although the results reveal that GP shows less sensitivity to

deal with imbalanced data than ML, we advocate the use of HyBridized Tech-

niques (HBT) which have been found useful by combining the advantages of615

search-based and ML techniques to produce better results [13].

5.3. RQ3. Results for Feature Analysis

In this RQ, we want to better understand what features contributed to

achieving higher performances. Figure 9 shows the results of feature ranking

for each project while Table 6 provides a summary for the all studied projects.620

Broadly speaking, the figure did not reveal any significant variation between

features categories with regard to the rate of occurrences. However, among all

projects, the most important feature types are change type, project history and

link to the last build.

Change type features are the most occurring among five projects including625

cloudify, gradle, graylog2-server, vagrant and rails. This suggests that

changes to specific types of files can affect the build outcome. For example, in

rails project, there exists 2,567 builds where changes to only source code files

introduced build failures which represent 72% of failed builds.

31

Table 6: A summary of the features ranking for all the studied projects.

Category Occurrence (%)

Change type 13.28

Project history 12.65

Link to last build 11.48

Cooperation 10.03

Triggering commit 9.52

Test density 9.23

Committer experience 9.15

Change size 8.80

Files change 8.80

Test change 7.07

Project History are also the most prominent features for four projects630

namely mifosx, openproject, sonarqube and ruby. For these projects, a closer

examination reveals that the statistics of the project have a clear indication of

the build outcome. For instance, in mifosx project, our rules expose that one

of the conditions to cause build failure is having a historical failure rate higher

than 40% which alone covers around 69% of the builds in this project. A similar635

behavior was observed in openproject project as well. This result lends support

to previous research efforts [9] claiming that the statistics about the project are

the most useful features in predicting the build outcome.

Link to last build is another features category that seems to be important,

which appears the most in metasploit-framework project. In fact, most of our640

generated rules for this project classify the instances that failed along from the

previous one. On the other side, in this project, there exist 500 failed builds

of which 124 occurred consecutively (about 25%) which provides additional

support for our rules. As stated previously [8, 9, 29], it is apparent that phases

of build instability perpetuate failures.645

32

Other features are also important in indicating CI build outcome. For in-

stance, features related to the test density appear the most in openproject

project. Metrics about committer experience represent also an important per-

centage of appearance in rails project. However, test changes seem to be less

important achieving a modest presence across all the studied projects (6% on650

average) which indicates that these features are not highly related to the build

outcome.

6. Discussion

In this section, we discuss our findings and their implications for developers,

researchers and tool builders.655

6.1. For CI developers

We can help developers to take the necessary preventive actions

to avoid breaking the build. We have shown that our approach is able to

predict the CI build results, however, the key innovation of our approach is that

it is able to provide an explainable prediction model, and also some modalities660

to be respected in order to avoid build failures. For instance, Figure 10 shows

an example of a prediction rule that was generated by our tool to predict the

failure in the mitchellh/vagrant project with high AUC and balance scores

of 92%. In this rule, it is suggested that, among different conditions, if the

number of modified files (FM) in the current build is less 10 then your CI build665

is likely to fail. As an alternative to avoid such build failures, the developer may

opt to reduce the number of modified files in a commit or may also split the

number the files into two or more build pushes to reduce the change complexity,

and thus reduce potential build failures. More interestingly, we plan to extend

our approach with further support to software developers by suggesting change670

fixes for their failed CI builds based on the violated conditions in the generated

tree-based rules.

Hence, such explainable models show indeed that it is possible to pinpoint

the root cause of a CI build failure using our search-based approach. Moreover,

33

it is worth noting that it may be possible to reduce the complexity of the675

generated prediction rules (e.g., tree size and/or depth) in order to provide easier

explainable models for CI developers with smaller slice and less complexity, but

with of cost of scarifying with some accuracy. Indeed, as part of our future work,

we plan to extend our approach into a multi-objective approach to find the best

trade-off between the model accuracy and complexity, which are in conflicting680

considerations.

Build verification is fast. We envisage our solution being used by de-

velopers, in their daily CI workflow to check whether their changes will break

the build. One of the benefits of using our approach is that also, like ML tech-

niques, we can save the learning model to be used for the prediction or updated685

later when more data is available over time as the project evolves. Thus, it

is important to assess the scalability of our approach from the data point of

view. To this end, we conducted an experiment to assess the ability of our

search-based approach to scale to larger datasets. Figure 11 reports the results

of our experiment. We find that our search-based approach scales linearly i.e.,690

depends on the size of the learning set, as shown in the figure. For instance,

with a dataset composed of 10,629 our tool can train the model within 9 min-

utes approximately, which is considered reasonable from computation point of

view. However, from a developer point point of view it is worth noting that the

training on the dataset is required only once to build the model that will be695

used later for the prediction. The prediction consists of simply checking whether

the conditions that appear in the prediction rule (e.g., Figure 10) are violated

or not which takes typically few seconds. Thereafter, the tool can update the

model with more data after a number builds that could be configured by the

developer.700

Note that in this work, all the experiments are executed on a computer

equipped with an Intel Core i7-7700k 4.2 GHZ CPU and 16GB memory.

34

6.2. For researchers

The reasons behind build failure need more in-depth studies. Al-

though, in this paper, we showed that failure prediction is possible with en-705

couraging scores, we believe that by enhancing the feature engineering, we can

obtain better results. Hence, the results may encourage CI researchers to inves-

tigate other measurable internal and external metrics and factors that could be

correlated with the build outcome.

Retro-actions to fix a failed build. As discussed earlier in Section 6.1,710

our explainable model for build failures prediction can provide a valuable sup-

port to developers on how to proceed to fix their failed builds based on the

violated rules or conditions. Moreover, looking at what rules or specific condi-

tions were violated in a build failure represent a crucial information and valuable

knowledge to be used as a starting point to prepare or recommend retro-action715

plans to fix the failed build. Thus, such valuable information may encourage

researchers to develop automated build failure fix approaches, which is indeed

one of our future research works. Furthermore, providing such information on

the build failures may increase learning within developers and provide them

with better understanding on the root causes of such build failures. Moreover,720

documenting such violations may also increase knowledge transfer from devel-

opers.

Researchers could investigate periodicity in build failure. Our fea-

tures analysis lends support to previous a research efforts [29] showing that many

failed builds occurred consecutively which indicate that if the build failed, the725

next build is more likely to fail as well. This finding may encourage researchers

to get insights into the periodic trends of build failure which would help us to

enhance the prediction accuracy.

6.3. For tool builders

Tool for recommending relevant files for build failures localisation.730

Our features ranking analysis showed that change type features, such as the

number of configuration files touched in the built commits, are prominent to

35

detect build failures in the studied projects. On another hand, developers may

follow a tedious process to localize the file causing the failure. Hence, tool

builders should supply development teams with tools to identify potential files735

in order to accelerate the build fixing process.

7. Threats to validity

This section describes the threats to the validity of our experiments.

Internal validity. One threat to internal validity is related to training and

test sets selection. As an attempt to mitigate this issue, we considered online740

validation which is a realistic scenario as it considers the chronological order of

CI builds and mimics what happens during the continuous integration process.

Future work is planned to validate our approach considering other scenarios

such as cross-project validation. Another threat to validity can be related to

the stochastic nature of the meta-heuristic algorithms [14, 55]. To mitigate this745

threat, we performed 31 runs of each algorithm and considered the median value

in each validation iteration. Moreover, we have double checked our experiments

as well as the datasets collected from TravisTorrent through manual inspection,

still there could be errors that we did not notice.

Construct validity. Threats to construct validity can be related to the set750

of used metrics and performance measure. We basically used standard perfor-

mance metrics such as AUC and balance that are widely accepted in predictive

models in software engineering [13]. As for the used measurements, we used

standard features from TravisTorrent data set and other generated features re-

lated especially to historical build failure that commonly used in the literature755

[28, 53, 26, 31, 8, 53, 41]. Although our approach is not closely coupled with

the features used in this paper, we plan to extend our measurements to other

code level metrics and other external factors as an attempt to see their impact

on the prediction performance. Another potential threat could be related to

the selection of the prediction techniques. Although we used different search-760

based techniques, i.e., NSGA-II, NSGA-II, SPEA2, GA, and random search,

36

and different machine learning techniques, i.e., DT, RF and NB, which are the

most applied in existing solutions for build prediction and several other software

engineering problems [28, 31, 41, 8]. To mitigate this threat, we plan as part of

our future work to conduct a large scale empirical study with other search-based765

and machine learning techniques.

Conclusion validity. We have carefully chosen non-parametric tests, namely

Wilcoxon and Cliff’s delta, in the study as they do not require data normality

assumptions [13]. The suitability of the used statistical non-parametric meth-

ods with data ordinality, along with no assumption on their distribution raises770

our confidence about the significance of the analyzed statistical relationships.

Moreover, to increase the confidence in the study results, we used two widely-

acknowledged prediction performance measures, i.e., balance and AUC, and

three performance measures, i.e., hyper-volume (HV), generational distance

(GD) and spacing (SP) to evaluate the obtained results from the considered775

algorithms.

External validity. Our experimental results might have concerns of gen-

eralizability, since we performed the experiments with ten open source projects

that use TravisTorrent as their CI host tool. While TravisTorrent is one of

widely used CI tools, our results could not be generalized to other CI tools and780

other open-source or industrial projects. As future work, we plan to extend our

study on other open source and industrial projects as well as other CI tools. We

also plan to provide our approach as bot to be integrated into code review and

CI tools to help developers predicting their build failure risks.

8. Conclusions and Future Work785

In this article, we introduced a new search-based approach for CI build fail-

ure prediction. In our genetic programming (GP) adaptation, prediction rules

are represented as a combination of metrics and threshold values that should

correctly predict as much as possible the failed builds extracted from a base

of real world examples. Considering online validation, the statistical analysis790

37

of the obtained results provides evidence that our approach outperforms three

Machine Learning (ML) techniques, for which we applied re-sampling, as well as

Random Search and mono-objective Genetic Algorithm, based on a benchmark

of 56,019 CI builds of ten projects that use Travis CI. Regarding the most im-

portant indicators used by our generated rules, we found that features related795

to (i) the changed file types, (ii) last build and (iii) specific statistics about the

project such as historical failure rate to be the most important indicators of CI

build outcome.

While the obtained results are considered promising, it could be further

validated with larger sample size with a variety of CI systems to conclude about800

the general applicability of our methodology. Moreover, we believe that by

using a more personalized group of features with external factors, the prediction

performance could be further improved, which we plan to explore in the future.

Also, we plan also to extend our approach by adopting HyBridized Techniques

(HBT) which have been found useful by combining the advantages of search-805

based and ML techniques to produce better results.

References

[1] P. M. Duvall, S. Matyas, A. Glover, Continuous integration: improving

software quality and reducing risk, Pearson Education, 2007.

[2] B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, V. Filkov, Quality and produc-810

tivity outcomes relating to continuous integration in github, in: 10th Joint

Meeting on Foundations of Software Engineering, ESEC/FSE 2015, 2015,

pp. 805–816.

[3] M. Fowler, Continuous Integration, https://www.martinfowler.com/

articles/continuousIntegration.html,, accessed: 2020-01-01 (2006).815

[4] M. Hilton, T. Tunnell, K. Huang, D. Marinov, D. Dig, Usage, costs,

and benefits of continuous integration in open-source projects, in: 31st

38

https://www.martinfowler.com/articles/continuousIntegration.html
https://www.martinfowler.com/articles/continuousIntegration.html
https://www.martinfowler.com/articles/continuousIntegration.html

IEEE/ACM International Conference on Automated Software Engineer-

ing, ASE 2016, 2016, pp. 426–437.

[5] Y. Zhao, A. Serebrenik, Y. Zhou, V. Filkov, B. Vasilescu, The impact of820

continuous integration on other software development practices: A large-

scale empirical study, in: 32nd IEEE/ACM International Conference on

Automated Software Engineering, 2017, pp. 60–71.

[6] M. Hilton, N. Nelson, T. Tunnell, D. Marinov, D. Dig, Trade-offs in contin-

uous integration: assurance, security, and flexibility, in: 11th Joint Meeting825

on Foundations of Software Engineering, ACM, 2017, pp. 197–207.

[7] R. Abdalkareem, S. Mujahid, E. Shihab, J. Rilling, Which commits can be

ci skipped?, IEEE Transactions on Software Engineering.

[8] F. Hassan, X. Wang, Change-aware build prediction model for stall avoid-

ance in continuous integration, in: ACM/IEEE International Symposium830

on Empirical Software Engineering and Measurement, 2017, pp. 157–162.

[9] A. Ni, M. Li, Cost-effective build outcome prediction using cascaded clas-

sifiers, in: 2017 IEEE/ACM 14th International Conference on Mining Soft-

ware Repositories (MSR), IEEE, 2017, pp. 455–458.

[10] U. Bhowan, M. Johnston, M. Zhang, Evolving ensembles in multi-objective835

genetic programming for classification with unbalanced data, in: Annual

conference on Genetic and evolutionary computation (GECCO), 2011, pp.

1331–1338.

[11] U. Bhowan, M. Zhang, M. Johnston, Genetic programming for classification

with unbalanced data, in: European Conference on Genetic Programming,840

Springer, 2010, pp. 1–13.

[12] U. Bhowan, M. Johnston, M. Zhang, X. Yao, Reusing genetic programming

for ensemble selection in classification of unbalanced data, IEEE Transac-

tions on Evolutionary Computation 18 (6) (2013) 893–908.

39

[13] R. Malhotra, M. Khanna, An exploratory study for software change pre-845

diction in object-oriented systems using hybridized techniques, Automated

Software Engineering 24 (3) (2017) 673–717.

[14] M. Harman, S. A. Mansouri, Y. Zhang, Search-based software engineering:

Trends, techniques and applications, ACM Computing Surveys (CSUR)

45 (1) (2012) 11.850

[15] J. Nam, W. Fu, S. Kim, T. Menzies, L. Tan, Heterogeneous defect predic-

tion, IEEE Transactions on Software Engineering 44 (9) (2017) 874–896.

[16] A. Ouni, M. Kessentini, H. Sahraoui, M. Boukadoum, Maintainability de-

fects detection and correction: a multi-objective approach, Automated

Software Engineering 20 (1) (2013) 47–79.855

[17] J. Chen, V. Nair, R. Krishna, T. Menzies, “sampling” as a baseline opti-

mizer for search-based software engineering, IEEE Transactions on Software

Engineering 45 (6) (2018) 597–614.

[18] M. Kessentini, A. Ouni, Detecting android smells using multi-objective ge-

netic programming, in: International Conference on Mobile Software En-860

gineering and Systems, 2017, pp. 122–132.

[19] Z. Eckart, L. Marco, T. Lothar, Improving the strength pareto evolutionary

algorithm for multiobjective optimi-zation, EUROGEN, Evol. Method Des.

Optim. Control Ind. Problem (2001) 1–21.

[20] Y. Jin, B. Sendhoff, Pareto-based multiobjective machine learning: An865

overview and case studies, IEEE Transactions on Systems, Man, and Cy-

bernetics, Part C (Applications and Reviews) 38 (3) (2008) 397–415.

[21] H. Zhao, A multi-objective genetic programming approach to developing

pareto optimal decision trees, Decision Support Systems 43 (3) (2007) 809–

826.870

40

[22] U. Bhowan, M. Johnston, M. Zhang, X. Yao, Evolving diverse ensembles

using genetic programming for classification with unbalanced data, IEEE

Transactions on Evolutionary Computation 17 (3) (2012) 368–386.

[23] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiob-

jective genetic algorithm: Nsga-ii, Vol. 6, 2002, pp. 182–197.875

[24] R. Malhotra, A systematic review of machine learning techniques for soft-

ware fault prediction, Applied Soft Computing 27 (2015) 504–518.

[25] Dataset for ci build prediction, Available at : https://github.com/

GP-CI-Build-Fail/replication-package (2020).

[26] J. Xia, Y. Li, Could we predict the result of a continuous integration build?880

an empirical study, in: 2017 IEEE International Conference on Software

Quality, Reliability and Security Companion (QRS-C), IEEE, 2017, pp.

311–315.

[27] Z. Xie, M. Li, Cutting the software building efforts in continuous integration

by semi-supervised online auc optimization., in: IJCAI, 2018, pp. 2875–885

2881.

[28] J. Xia, Y. Li, C. Wang, An empirical study on the cross-project predictabil-

ity of continuous integration outcomes, in: 2017 14th Web Information

Systems and Applications Conference (WISA), IEEE, 2017, pp. 234–239.

[29] T. Rausch, W. Hummer, P. Leitner, S. Schulte, An empirical analysis of890

build failures in the continuous integration workflows of java-based open-

source software, in: Proceedings of the 14th international conference on

mining software repositories, IEEE Press, 2017, pp. 345–355.

[30] M. Beller, G. Gousios, A. Zaidman, Oops, my tests broke the build: An

explorative analysis of travis ci with github, in: IEEE/ACM International895

Conference on Mining Software Repositories, 2017, pp. 356–367.

41

https://github.com/GP-CI-Build-Fail/replication-package
https://github.com/GP-CI-Build-Fail/replication-package
https://github.com/GP-CI-Build-Fail/replication-package

[31] Y. Luo, Y. Zhao, W. Ma, L. Chen, What are the factors impacting build

breakage?, in: 2017 14th Web Information Systems and Applications Con-

ference (WISA), IEEE, 2017, pp. 139–142.

[32] A. Atchison, C. Berardi, N. Best, E. Stevens, E. Linstead, A time series900

analysis of travistorrent builds: to everything there is a season, in: 2017

IEEE/ACM 14th International Conference on Mining Software Reposito-

ries (MSR), IEEE, 2017, pp. 463–466.

[33] M. Beller, G. Gousios, A. Zaidman, Travistorrent: Synthesizing travis

ci and github for full-stack research on continuous integration, in: 2017905

IEEE/ACM 14th International Conference on Mining Software Reposito-

ries (MSR), 2017, pp. 447–450.

[34] T. A. Ghaleb, D. A. da Costa, Y. Zou, An empirical study of the long

duration of continuous integration builds, Empirical Software Engineering

(2019) 1–38.910

[35] K. Deb, H. Jain, An evolutionary many-objective optimization algorithm

using reference-point-based nondominated sorting approach, part i: solving

problems with box constraints, IEEE Transactions on Evolutionary Com-

putation 18 (4) (2013) 577–601.

[36] M. Harman, P. McMinn, J. T. De Souza, S. Yoo, Search based software915

engineering: Techniques, taxonomy, tutorial, in: Empirical software engi-

neering and verification, Springer, 2010, pp. 1–59.

[37] W. Mkaouer, M. Kessentini, A. Shaout, P. Koligheu, S. Bechikh, K. Deb,

A. Ouni, Many-objective software remodularization using nsga-iii, ACM

Transactions on Software Engineering and Methodology (TOSEM) 24 (3)920

(2015) 17.

[38] A. Ouni, M. Kessentini, H. Sahraoui, K. Inoue, K. Deb, Multi-criteria

code refactoring using search-based software engineering: An industrial

42

case study, ACM Transactions on Software Engineering and Methodology

(TOSEM) 25 (3) (2016) 23.925

[39] J. R. Koza, J. R. Koza, Genetic programming: on the programming of

computers by means of natural selection, Vol. 1, MIT press, 1992.

[40] M. Harman, J. Clark, Metrics are fitness functions too, in: 10th Interna-

tional Symposium on Software Metrics, 2004, pp. 58–69.

[41] M. Santolucito, J. Zhang, E. Zhai, R. Piskac, Statically verifying continuous930

integration configurations, Technical Report.

[42] M. Harman, B. F. Jones, Search-based software engineering, Information

and software Technology 43 (14) (2001) 833–839.

[43] D. C. Karnopp, Random search techniques for optimization problems, Au-

tomatica 1 (2-3) (1963) 111–121.935

[44] J. Cervantes, X. Li, W. Yu, Using genetic algorithm to improve classifica-

tion accuracy on imbalanced data, in: 2013 IEEE International Conference

on Systems, Man, and Cybernetics, IEEE, 2013, pp. 2659–2664.

[45] M. Li, H. Zhang, R. Wu, Z.-H. Zhou, Sample-based software defect predic-

tion with active and semi-supervised learning, Automated Software Engi-940

neering 19 (2) (2012) 201–230.

[46] T. Menzies, J. Greenwald, A. Frank, Data mining static code attributes to

learn defect predictors, IEEE transactions on software engineering 33 (1)

(2006) 2–13.

[47] F. di Pierro, S.-T. Khu, D. A. Savic, An investigation on preference order945

ranking scheme for multiobjective evolutionary optimization, IEEE Trans-

actions on Evolutionary Computation 11 (1) (2007) 17–45.

[48] E. Zitzler, M. Laumanns, L. Thiele, Spea2: Improving the strength pareto

evolutionary algorithm, TIK-report 103.

43

[49] M. Harman, The current state and future of search based software engi-950

neering (2007) 342–357.

[50] D. Hadka, MOEA Framework, http://moeaframework.org/, accessed:

2020-01-01.

[51] D. Hadka, Moea framework user guide.

[52] N. Riquelme, C. Von Lücken, B. Baran, Performance metrics in multi-955

objective optimization, in: 2015 Latin American Computing Conference

(CLEI), IEEE, 2015, pp. 1–11.

[53] A. Ni, M. Li, Poster: Acona: Active online model adaptation for pre-

dicting continuous integration build failures, in: 2018 IEEE/ACM 40th

International Conference on Software Engineering: Companion (ICSE-960

Companion), IEEE, 2018, pp. 366–367.

[54] N. V. Chawla, K. W. Bowyer, L. O. Hall, W. P. Kegelmeyer, Smote: syn-

thetic minority over-sampling technique, Journal of artificial intelligence

research 16 (2002) 321–357.

[55] A. Arcuri, L. Briand, A practical guide for using statistical tests to assess965

randomized algorithms in software engineering, in: International Confer-

ence on Software Engineering (ICSE), 2011, pp. 1–10.

[56] F. Wilcoxon, S. Katti, R. A. Wilcox, Critical values and probability levels

for the wilcoxon rank sum test and the wilcoxon signed rank test, Selected

tables in mathematical statistics 1 (1970) 171–259.970

[57] N. Cliff, Dominance statistics: Ordinal analyses to answer ordinal ques-

tions., Psychological bulletin 114 (3) (1993) 494.

[58] J. Romano, J. D. Kromrey, J. Coraggio, J. Skowronek, Appropriate statis-

tics for ordinal level data: Should we really be using t-test and cohen’sd

for evaluating group differences on the nsse and other surveys, in: annual975

44

http://moeaframework.org/

meeting of the Florida Association of Institutional Research, 2006, pp. 1–

33.

[59] G. H. John, P. Langley, Estimating continuous distributions in bayesian

classifiers, arXiv preprint arXiv:1302.4964.

45

./imgs/auc_1.pdf

./imgs/auc_2.pdf

Figure 7: Boxplots comparing the achieved AUC values for NSGA-II and each of the machine

learning techniques, DT, NB and RF.

46

./imgs/bal_1.pdf

./imgs/bal_2.pdf

Figure 8: Boxplots comparing the achieved balance values for NSGA-II and each of the

machine learning techniques, DT, NB and RF

47

./imgs/score_1.pdf

./imgs/score_2.pdf

Figure 9: Features ranking for each project.

48

./imgs/disc_rule1.pdf

Figure 10: An example of CI build failure prediction rule for the mitchellh/vagrant project.

49

./imgs/time.pdf

Figure 11: The impact of the training dataset size on the NSGA-II execution time to build

the prediction model.

50

	Introduction
	Background and related work
	CI Build Process
	Related Work

	Search-based Prediction of CI build failure
	Approach Overview
	NSGA-II adaptation
	NSGA-II overview
	Adaptation

	Dataset and CI-related Metrics

	Validation
	Research Questions
	Analysis method
	Prediction performance
	Algorithms performance
	Feature Ranking

	Subjects Selection
	Inferential Statistical Test methods Used
	Parameter Tuning and Setting

	Experimental results
	RQ1. Results for GP comparison
	RQ2. Results for comparison with ML
	RQ3. Results for Feature Analysis

	Discussion
	For CI developers
	For researchers
	For tool builders

	Threats to validity
	Conclusions and Future Work

