
https://doi.org/10.1007/s10664-022-10125-6

Tracking bad updates in mobile apps:
a search-based approach

Islem Saidani1 ·Ali Ouni1 ·Md Ahasanuzzaman2 · Safwat Hassan3 ·
MohamedWiemMkaouer4 ·Ahmed E. Hassan2

Accepted: 24 January 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
The rapid growth of the mobile applications development industry raises several new chal-
lenges to developers as they need to respond quickly to the users’ needs in a world of
continuous changes. Indeed, mobile apps undergo frequent updates to introduce new fea-
tures, fix reported issues or adapt to new technological or environment changes. Hence,
introducing changes in this context is risky and can harmfully impact the application rating
and competitiveness. Thus, ensuring that the application updates are deployed in a con-
trolled way is of crucial importance. To better support mobile applications evolution and
cut-off the costs of users dissatisfaction, we propose in this paper, APPTRACKER, a novel
approach to automatically track bad release updates in Android applications (i.e., releases
with higher percentage of negative reviews relative to the prior releases). We formulate the
problem as a three-class classification problem to label the apps updates as bad, neutral or
good. To solve this problem, we evolve bad release detection rules using Multi-Objective
Genetic Programming (MOGP) based on the adaptation of the Non-dominated Sorting
Genetic Algorithm (NSGA-II). In particular, the search process aims to provide the optimal
trade-off between two conflicting objectives to deal with the considered classes. We evalu-
ate our approach and investigate the performance of both within-project and cross-project
validation scenarios on a benchmark of 50,700 updates from 1,717 free Android apps from
Google Play Store. The statistical tests revealed that our approach achieves a clear advantage
over machine learning approaches (e.g., random forest, decision tree, etc.) with signifi-
cant improvements of 18% and 6% in terms of F1-score within-project and cross-project
validations, respectively. Furthermore, the features analysis reveals that (1) the previous
updates ratings and (2) the APK size are the most important features for both within and
cross-project scenarios.

Keywords Mobile apps · Software releases · Bad updates · User rating ·
Search-based software engineering · Android · Google Play Store

Communicated by: Aldeida Aleti, Annibale Panichella, Shin Yoo

This article belongs to the Topical Collection: Advances in Search-Based Software Engineering (SSBSE)

� Islem Saidani
islem.saidani.1@ens.etsmtl.ca

Extended author information available on the last page of the article.

Published online: 6 April 2022

Empirical Software Engineering (2022) 27: 81

/

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1 Introduction

Over the last years, software development and releasing activities have shifted from a tradi-
tional process, in which software projects are released following a clearly defined road-map,
towards a modern process in which continuous releases become available on a weekly/daily
basis. Nowadays, such an agile strategy is massively adopted by mobile applications (apps).
Indeed, with more than two billion users relying on smart-phones and tablets (Catolino
et al. 2019), mobile apps development undergoes continuous changes to add new fea-
tures, fix reported issues, or adapt to new technological and environmental changes. Hence,
many mobile applications often release daily updates of their applications to quickly deliver
up-to-date applications to end users (Openja et al. 2020).

In this context, software change management represents a fast-paced task of extreme
complexity (Klepper et al. 2015) while mobile release engineering in a non-trivial and risky
task that requires comprehensive information and knowledge (Nayebi et al. 2016). In fact,
the tension between release speed and quality is a major concern for mobile apps develop-
ers as bad changes adversely affect users experience and may drive them away over time in
a very competitive mobile apps market (Palomba et al. 2015; Villarroel et al. 2016). Indeed,
one of the unique and important features that mobile app platforms, such as Google Play
Store, provide is the users reviews and rating. User reviews represent a powerful asset to
reflect users’ (dis)satisfaction and can provide a complementary view on the app’s suc-
cess and quality as large amount of reviews contain bug reports (Maalej and Nabil 2015;
Panichella et al. 2015; 2016). For instance, unexpected or poor app changes may cause
even loyal users to explore alternative apps as pointed out by Martens and Maalej (2019).
Recently, Hassan et al. (2018) showed that various app changes such as feature removal
and user interface (UI) issues have the influence to increase the number of negative user
reviews, while bad updates having crashes and functional issues tend to be fixed in subse-
quent updates. Therefore, the analysis of user reviews about a specific update is of pivotal
importance as pointed out by Hassan et al. (2018). Hence, providing developers with rel-
evant tools to track and prevent bad updates before pushing them into the marketplace is
crucial to maintain and improve the rating of their apps.

To address this issue, we introduce a novel approach, namely APPTRACKER, to automate
the tracking of mobile app bad updates (i.e., updates with higher percentage of negative
user reviews relative to the prior updates of the app (Hassan et al. 2018)). The problem is
formulated as a three-class classification problem to classify releases into “good”, “bad”
or “neutral”. In particular, we adopt the One-Versus-All (OVA) method (Rocha and Gold-
enstein 2013) which consists of decomposing our multi-class classification problem into
multiple binary problems. Then, we evolve various binary classifiers to generate classifi-
cation rules using Multi-Objective Genetic Programming (MOGP) as a base learner. In the
context of OVA method, for each class i, we train a base MOGP learner using all instances
of this class as positive data points, while the remaining classes are considered as negative
data points. Our MOGP formulation is based on an adaptation of the non-dominated sort-
ing genetic algorithm (NSGA-II) (Deb et al. 2002). MOGP techniques have been widely
adopted in search-based software engineering (SBSE) (Harman and Jones 2001; Ouni 2020)
to solve various classification-related software engineering problems (Saidani et al. 2020;
Kessentini et al. 2014; Almarimi et al. 2020; Kessentini and Ouni 2017; Ouni et al. 2015;
Harman et al. 2012), due to their efficiency in exploring large search spaces and search-
ing optimal solutions. More specifically, APPTRACKER approach aims at learning patterns
from examples of bad app releases that have been experienced by end users. These patterns

81 Page 2 of 42 Empir Software Eng (2022) 27: 81

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

are expressed in the form of tree-based solution representation that is expressed as logi-
cal combinations of metrics and their corresponding threshold values. These solutions are
refined through a multi-objective evolutionary search process to converge towards the opti-
mal detection rules that should cover as much as possible the accurately detected (1) bad,
(2) good and (3) neutral releases from the base of real-world app release examples.

To evaluate APPTRACKER, we performed an empirical study on a large benchmark of
50,700 releases extracted from 1,717 popular apps in the Google Play Store.1 Based on two
different validation scenarios, within-project and cross-project settings, our obtained results
confirm that APPTRACKER statistically advances the baseline techniques. Moreover, we
leverage our generated rules by analyzing the obtained Pareto fronts (i.e., the non-dominated
solutions) achieved by the MOGP algorithm. In particular, we measure the features’ impor-
tance using the Permutation Feature Importance (PFI) technique (Breiman 2001; Fisher
et al. 2019), and then rank them using Scott-Knott (SK) algorithm (Tantithamthavorn et al.
2017; 2018a) in order to prioritize the refactoring efforts during the app’s maintenance.
The results of this analysis reveal that the previous updates ratings and the APK size are the
most important features for both within and cross-project scenarios.

1.1 Contributions

The paper makes the following main contributions:

1. A novel approach, APPTRACKER, formulating the detection of mobile apps releases
as multi-class classification problem based on MOGP. We adopted MOGP as a base
learner to support multi-class classification by decomposing it into multiple binary
problems using the one-versus-all method. To the best of our knowledge, this is the first
search-based technique for the detection of bad releases in mobile applications.

2. An empirical evaluation on a benchmark of 50,700 releases from 1,717 Android apps,
shows that APPTRACKER outperforms various baseline machine learning techniques
by achieving median F1 scores of 46% and 47% in within-project and for cross-project
validations, respectively, across the three classes.

3. A qualitative analysis to discover which features are the most prominent using the
optimal rules based on the Pareto fronts analysis. The results reveal that the previous
updates ratings and the APK size are the most important features for both within and
cross-project scenarios.

4. A longitudinal labeled data from the Google Play Store from 1,717 free-to-download
Android apps having over 50,700 release updates for a period of over thee years
(Dataset for bad releases detection 2021).

1.2 Replication Package

We provide our replication package containing all the materials to reproduce and extend our
study (Dataset for bad releases detection 2021).

1.3 Paper Organization

In Section 2, we motivate the problem of tracking bad mobile releases with a real-world
example. Then, we explain our approach in Section 3. Section 4 describes the experimental

1https://play.google.com/

Page 3 of 42 81Empir Software Eng (2022) 27: 81

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

0.0

0.5

1.0

1.5

2.0

2.5
U

01
U

02
U

03
U

04
U

05
U

06
U

07
U

08
U

09
U

10
U

11
U

12
U

13
U

14
U

15
U

16
U

17
U

18
U

19
U

20
U

21
U

22
U

23
U

24
U

25
U

26
U

27
U

28
U

29
U

30
U

31
U

32
U

33
U

34
U

35
U

36
U

37
U

38
U

39
U

40
U

41
U

42
U

43
U

44
U

45
U

46
U

47
U

48
U

49
U

50
U

51
U

52
U

53
U

54

Updates

N
ag

at
iv

ity
 R

at
io

Bad Good Neutral

Fig. 1 A snapshot of updates fluctuations in Dubsmash app between 2016-05-17 and 2019-03-14

setup of our empirical study while Section 5 presents the results of this study. In Section 6,
we elaborate on the implications of our results. Section 7 discusses the threats to validity.
In Section 8, we survey the related work. Section 9 finally concludes and discusses future
research directions.

2 Motivating Example

To show the importance of early identification of bad release updates in mobile apps, we
describe in this section a motivating example from a real-world Android app. Let us con-
sider Dubsmash,2 a popular video sharing Android app (in the Video Players category).
Dubsmash used to maintain a stable rating history of 4.2/5 and most of its updates were
either “neutral” or “good” suggesting that the app have had a negligible negative user rating
for its updates. However, looking at its release history, we observe that the negativity ratio
(i.e. as the ratio of the percentage of negative reviews before update Ui to the percentage of
negative reviews of update Ui) highly increased immediately after the release of U43 (16
October 2018) as shown in Fig. 1. For instance, users were unhappy and complaining about
the recent updates leaving comments such as “This apps was very fun but got progressively
worse but got used to it, now it’s practically unusable ...” (cf. Fig. 2). While the app develop-
ers started to deploy more frequent updates with shorter delays (with less than two weeks on
average) to address the users concerns, users continued expressing their complaints. Within
few months, the negative ratings increased from 10% to reach 25% on 14 March 2019.

A closer examination of the Dubsmash app change history has shown that during this
period, many features were deleted from the app. Thus, the app installation size (i.e., APK
file) has decreased by 71% (from 30 MB to 8.7 MB) and consequently the number of activ-
ities has dropped from 53 to 31 (-154%) and so is the number of intents that decreased by
78%. In addition, the minimum SDK version (i.e., the required Android version to run the
app) has been upgraded from 4.1 to 4.4, which led to losing users who are using older SDK
versions in their devices. These changes have led to many user complaints, as shown in
Fig. 2.

This example indicates the usefulness and the need for an automated tool to track bad
updates in order to avoid negatively affecting users experience and ensuring the success of

2https://play.google.com/store/apps/details?id=com.mobilemotion.dubsmash

81 Page 4 of 42 Empir Software Eng (2022) 27: 81

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Fig. 2 Examples of users’ reviews on the Dubsmash app from Google Play Store

the app and this by learning from previous types of updates (good, bad, or neutral). How-
ever, this task is not trivial in practice. In fact, the main difficulty lies in the complex search
space as the number of possible combinations of update features (e.g., changes in the user
interface, features removal or addition, SDK update, release size, changes in the app per-
missions, changes in the libraries, etc.) and their associated values is very large. Hence,
tracking bad updates can be formulated as a search-based optimization problem to explore
this large search space, in order to find the optimal detection rules for each class. Addition-
ally, a practical tool should provide the developers with human explainable detection rules

Ncust >= 14

Ndang <= 6

Nnorm >= 7

Nserv >= 20

OR

AND

AND

AND

Chang_perc_APK_size >= -71

Nact <= 53
AND

Chang_perc_Nintent >= -78

Min_SDK >= 4.4
AND

AND

Fig. 3 An illustrative example of bad releases detection rule for the Dubsmash app

Page 5 of 42 81Empir Software Eng (2022) 27: 81

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

to help them gain insights into bad changes, especially when these changes are not trivial,
as shown in this example. For instance, one possible detection rule for Dubsmash app, as
illustrated in Fig. 3, indicates that to avoid a bad update, the decrease in the APK size (i.e.,
Chang perc APK size) and in the number of intents (i.e. Chang perc Nintent) should not
exceed 70% and 77%, respectively. Additionally, the number of activities (i.e., Nact) should
be more than 52. On the other side, the minimum SDK version (i.e., Min SDK) should not
exceed 4.4. These conditions could be leveraged as refactoring recommendations that guide
the developers in the maintenance process in order to maintain the app’s rating.

In the next section, we describe APPTRACKER and show how we formulated the
bad updates tracking problem as a multi-objective combinatorial optimization problem to
address the above mentioned problems.

3 The APPTRACKER Approach

In this section, we describe our APPTRACKER approach to automatically track bad mobile
apps releases using multi-objective genetic programming (MOGP).

3.1 Approach Overview

Figure 4 illustrates an overview of APPTRACKER, a two-phase framework (1) training and
(2) detection. In the training phase, our main goal is to decompose the multi-class problem
into multiple binary problems to build a set of binary detection rules from real-world exam-
ples of various Android apps releases. In the detection phase, we use these generated rules
to detect the appropriate label (neutral, good or bad) for new unlabeled data (i.e., a new
release).

App 1

Releases

…

Training data – mobile apps with releases’ instances

Optimal (non-
dominated)
Detection

rules of each
class

App n

Releases

App 2

Releases

Detection Phase

New
Release

Apply
Weighted
Majority
Voting

A

Features ExtractionB

C D

Training set

Bad/Neutral/Good
release

Training Phase

1. Maximize the probability of detec�on
2. Minimize the false alarms

Binary classifica�on using
NSGA-II

Class 1: Good
Class 1: Neutral
Class 1: Bad

Multi Objective Genetic Programming (MOGP) based
three-class classification

Fig. 4 Approach overview

81 Page 6 of 42 Empir Software Eng (2022) 27: 81

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

As shown in Fig. 4, our framework takes as input a set of mobile app releases with known
labels, i.e., “bad”, “good” or “neutral” (Step A). Then, the Step B consists of extracting
a set of features characterizing the considered releases in order to feed the search-based
algorithm using multi-objective genetic programming (MOGP). As output, a set of non-
dominated rules (i.e., a solution that has a score for each objective such that no other solution
within the set has a better score across all objectives) will be built (Step C). Thereafter, in
the detection phase, the framework assigns the proper class of a new release knowing its
characteristics (Step D) using an ensemble majority voting based on each rule’s score. In
the next subsections, we detail each step.

3.2 Step A: Training Data Preparation: Collecting Apps Data

Our data collection follows a three-steps process. First, we collected app updates data (e.g.,
the APK files of the releases) of popular free Android apps in the Google Play Store. Then,
we extracted app manifest information. Finally, we collected data about advertisement (Ads)
libraries that are used in each app.

3.2.1 Collecting Updates of the Google Play Store Apps

To collect Google Play Store apps, we proceeded as follows:

A. Selecting Top Free-to-Download Apps In this study, we focused on free-to-download
apps of the Google Play Store (Noei et al. 2017). In particular, we selected a set of mobile
apps with respect to the following criteria:

– App popularity: We considered popular Android apps in Google Play Store as we
expect that these apps are developed and maintained by developers who care about their
apps rating, and have a large user-base.

– App diversity: We considered the top popular Android apps across all categories in the
Google Play Store to ensure that there is no bias towards specific app categories in our
observations.

Our selection of the top free-to-download apps is based on App Annie’s report on popular
apps (AppAnnie 2020) in the Google Play Store since 2016. Then, we selected the top-
hundred apps in each app category so that our study does not impact by the variances across
the different app categories. Next, we filtered out those apps that was repeated across the
categories, and that were already removed from the Google Play Store during our study
period. In total, we selected 1,717 apps having over 50,700 releases during our study period.
Table 2 provides some statistics about the studied apps.

B. Crawling App Data Over Three Years We used a Google Play crawler (Akdeniz 2013)
to gather longitudinal data during the period 20 April 2016 to 20 September 2019 from the
Google Play Store. Thereafter, for each studied app, we collected the following data:

– General data: The app title, description, current number of downloads, and rating.
– Updates data: The release notes of each update.
– User reviews data: The review title, review contents, rating, and review time.

At the end of this step, we collected a total of 50,700 updates that were released during
our study period. Table 2 summarizes the statistics about the collected updates for each
category.

Page 7 of 42 81Empir Software Eng (2022) 27: 81

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Table 1 Characterization of the
updates of an app Update Class Rule

Good Update Negativity ratio <1.0 - SD*

Bad Update Negativity ratio >1.0 + SD*

Neutral Update OtherwiseSD = Standard Deviation of the
negativity ratio

3.2.2 Extracting AppManifest Information

To collect metadata of an app, its components, and its requirements, we need to
extract the app manifest file (i.e., AndroidManifest.xml) from the APK file of
the app. We reverse engineered the APKs of each app update using the Apktool3 and
extracted AndroidManifest.xml files from the collected APKs. Then, we parsed
the AndroidManifest.xml and collected app metadata (e.g., permissions, activities,
services, and target SDK versions, etc.).

3.2.3 Collecting Data About Integrated Ad Libraries

To collect integrated advertisement (Ad) libraries, we followed Ahasanuzzaman et al.’s tech-
nique (Ahasanuzzaman et al. 2020; Ahasanuzzaman et al. 2020). In particular, we extract
the fully qualified class names of each class, and manually searched them on the web to
identify ad library packages. Thereafter, we collected the list of integrated ad libraries in
each update of the studied apps.

3.3 Characterizing the Studied Updates

We follow a similar approach of Hassan et al. (2018) to characterize the updates (e.g., good
or bad updates) of an app based on the app user ratings. First, we calculate the Ratio of
Negative Ratings RNR(Ui) of an update Ui of an app as the ratio of one or two star ratings
of the update Ui to the total number of ratings of all updates. Then, we calculate the Median
Ratio of Negative Ratings (MRNR(Ui)) of an update Ui which is the median of the Ratio
of Negative Rating of all the previous updates of Ui . Finally, to characterize an update Ui ,
we measure the Negativity Ratio (NR) of Ui based on the RNR(Ui and MRNR(Ui) as
follows:

Negativity Ratio(Ui) = RNR(Ui)

MRNR(Ui)
(1)

For instance, if an update with 10 user ratings (four ratings with two stars and six ratings

with four stars), then the RNR score of this update is 0.4
(
RNR = 4

10 = 0.4
)

. If the MRNR

of this update is 0.1, then its negativity ratio (NR) is 4
(
NR = 0.4

0.1 = 4
)

.

We characterize an update of an app into three classes using the negativity ratio. Table 1
shows the rules for characterization of an update(Hassan et al. 2018). These classes are the
target labels of an update in our dataset.

Table 2 shows the number of good, bad and neutral updates across the studied categories.

3https://github.com/iBotPeaches/Apktool

81 Page 8 of 42 Empir Software Eng (2022) 27: 81

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Table 2 Summary of the collected data

Row Labels # of # of good # of neutral # of bad # of

apps updates updates updates updates

ART AND DESIGN 2 14 7 1 22

AUTO AND VEHICLES 10 107 70 132 309

BEAUTY 3 32 12 6 50

BOOKS AND REFERENCE 71 690 476 698 1,864

BUSINESS 80 789 677 762 2,228

COMICS 43 207 165 174 546

COMMUNICATION 74 1,116 1,111 1,066 3,293

DATING 7 71 124 142 337

EDUCATION 71 786 600 665 2,051

ENTERTAINMENT 50 418 468 427 1,313

EVENTS 2 21 34 40 95

FINANCE 38 337 210 484 1031

FOOD AND DRINK 7 155 184 166 505

GAME 85 626 613 405 1644

HEALTH AND FITNESS 72 861 504 853 2,218

HOUSE AND HOME 10 161 122 236 519

LIBRARIES AND DEMO 15 58 34 43 135

LIFESTYLE 43 471 383 380 1,234

MAPS AND NAVIGATION 69 474 471 761 1,706

MEDIA AND VIDEO 5 4 12 8 24

MEDICAL 50 468 180 307 955

MUSIC AND AUDIO 66 683 692 568 1,943

NEWS AND MAGAZINES 76 837 483 880 2,200

PARENTING 7 77 28 56 161

PERSONALIZATION 87 766 663 586 2,015

PHOTOGRAPHY 92 1,200 928 743 2,871

PRODUCTIVITY 78 747 956 884 2,587

SHOPPING 53 593 575 884 2,052

SOCIAL 85 1,155 1,222 1,213 3,590

SPORTS 68 551 308 643 1,502

TOOLS 96 1,317 1,424 1,184 3,925

TRAVEL AND LOCAL 76 1,086 712 863 2,661

VIDEO PLAYERS 56 493 602 437 1,532

WEATHER 70 671 365 547 1,583

Total 1,717 18,042 15,415 17,244 50,701

3.4 Step B: Features Extraction

In our approach, we extracted a total of 41 metrics divided into ten dimensions that charac-
terize the update’s rating and thus its likelihood of being label as “bad”, “good” or “neutral”.

Page 9 of 42 81Empir Software Eng (2022) 27: 81

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Table 3 APPTRACKER metrics

Dimension Feature Explanation Rationale

Size of App release APK size The size of the app’s APK (in
MB) at the time of release.

Larger install size of an app
requires more space and band-
width to download the update
which can impact on the app’s
rating.

APK size changed Indicates whether APK size
has changed from previous
update.

chang perc APK size The percentage of change in
APK size from the previous
update. The positive value
shows the increase and nega-
tive value shows the decrease
in the value.

Nact # of activities that is defined for
the app screens.

An activity provides the win-
dow in which the app draws its
User Interface(UI). Many app
screens can be difficult to han-
dle and may cause issues in the
app.

Nact changed A boolean value shows any
change in Nact from the previ-
ous update.

chang perc Nact The percentage of change in
Nact from the previous update.

Nserv # of services in the app. A Service is an app component
that can perform long-running
operations in the background.
Running many services can
negatively impact the app bat-
tery’s lifespan.

Nserv changed A boolean value shows any
change in Nserv from the pre-
vious update.

chang perc Nserv The percentage of change
in Nserv from the previous
update.

Nintent # of intents in the app. The intent is a messaging
object used to launch a specific
app component or to request an
action from another app com-
ponent .

Nintent changed A boolean value shows any
change in Nintent from the pre-
vious update.

chang perc Nintent The percentage of change in
Nintent from the previous
update.

Ads libraries Nlib # of integrated libraries for dis-
playing ads.

Apps users may get frustrated
by the obtrusiveness of many
Ad in the middle of running the
app.

81 Page 10 of 42 Empir Software Eng (2022) 27: 81

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Table 3 (continued)

Dimension Feature Explanation Rationale

lib changed A boolean value shows any
change in Nlib from the previ-
ous update.

chang perc lib The percentage of change in
Nlib from the previous update.

SDK version Min SDK The minimum SDK version in
which the app can run in a
device.

Higher is the
min SDK version would
include many new features but
lose users who are using older
SDK versions in their device.

Min SDK changed A boolean value shows any
change in Min SDK from the
previous update.

chang perc min SDK The percentage of change in
Min SDK from the previous
update.

Targ SDK The SDK version of a user’s
device which can run the app.

The higher the Targ SDK, the
more the app utilizes new fea-
tures of the updated SDK.

targ SDK changed A boolean value shows any
change Targ SDK from the
previous update.

chang perc targ SDK The percentage of change in
Targ SDK from the previous
update.

Permissions Nperm # of permissions required to
run the application properly.

Users need to accept those per-
missions to run the app. If #
of permissions becomes very
high, app users can not trust the
app.

Nperm changed A boolean value shows any
change in Nperm from the pre-
vious app update.

chang perc Nperm The percentage of change
in Nperm from the previous
update.

Dang perm # of permissions that are
defined as dangerous by
Google.

Dangerous permissions require
resources that involve the
user’s private information, or
can potentially affect the user’s
stored data or the operation of
other apps.

Ndang changed A boolean value shows any
change in Dang perm from the
previous update.

chang perc Ndang The percentage of change in
Dang perm from the previous
update.

Page 11 of 42 81Empir Software Eng (2022) 27: 81

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Table 3 (continued)

Dimension Feature Explanation Rationale

Norm perm # of permissions that are
defined as normal by Google.

Normal permissions typically
have negligible risk to the
user’s privacy or the operation
of other apps. For example,
permission to set the time zone
is a normal permission.

Nnorm changed A boolean value shows any
change in # of normal permis-
sions from the previous update.

chang perc Nnorm The percentage of change in
Norm perm from the previous
app update.

Cust perm # of permission that are defined
by developers for the domain
of the app.

Custom app permissions allow
an app to share its resources
and capabilities with other
apps.

Ncust changed A boolean value shows any
change in Cust perm from the
previous update.

chang perc Ncust The percentage of change in
Cust perm from the previous
app update.

Marketing Effort Note length The total number of words in
the release note.

Many changes in the release
notes would indicate new fea-
tures/improvements in the app.

chang perc note Percentage of the modified
words in the release note.

Link to last release(s) hist perc neg rating The median percentage of neg-
ative rating of all previous
updates.

All previous negative ratings
can impact the current rating.

last perc neg rating The median percentage of neg-
ative rating of the previous
update.

hist rating The median aggregated rating
(a value between 0 to 5) of all
previous updates.

last rating The median aggregated rating
of the previous update.

Release Time delay last release The release time of this update
(days).

Faster release time can intro-
duce more bugs.

release time The median release time of
all previous deployed updates
(days).

In Table 3, we list our metrics suite and explain the rational behind each of them. In
particular, they identify the following categories:

– Size of the App: consists of metrics related to the APK size of an app at the time of
release. Larger size apps typically provide more features but at the same time, it requires
more space and bandwidth to download the update which could impact the app’s rating.

81 Page 12 of 42 Empir Software Eng (2022) 27: 81

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

We also collect the number of activities and services in each app release. An activity
provides a screen for users to interact, whereas a service is used to perform operations
in the background. We also consider the app intents which define the app’s “intent” to
perform an action.

– Ad libraries: This dimension captures any changes in the number of displayed adver-
tisements (ads). It has been shown that frequency and size of displayed Ad increases
the number of negative reviews (Ahasanuzzaman et al. 2020; Gui et al. 2017).

– SDK version: This dimension includes metrics related to the minimum and the target
Software Development Kit (SDK). Higher minimum and target SDK versions might
suggest that app included many new features but at the same time can lead to losing
users who are using older SDK versions in their devices.

– Permissions: In this dimension, we collect information about the user permissions.
Higher number of permissions increases privacy risks, thus it might impact the release’s
rating.

– Marketing effort: This dimension includes metrics related to the release description
(i.e., note) that is displayed to all users to present the new features or the resolved
issues. Many changes in the release notes would signify many feature updates and
improvements in the app

– Link to last releases (s): This dimension is related to the app’s releasing stability
overtime. Previous release ratings can help in predicting future release ratings.

– Release time: This dimension is dedicated to measuring the release frequency. More
frequent updates may still have the bug unsolved or frequent updates may increase more
issues in the apps as developers try to give an update in quick succession. However,
frequent updates may solve the issue and that may satisfy the users. Hassan et al. (2017)
analyzed the emergency updates and found that the ratio of negative reviews is small
for the emergency.

3.5 Step C: MOGP-Based Three-Class Classification

To address the three-class classification problem, we divide it into three binary classification
problems using the One-Versus-All (OVA) method. For each binary classification instance,
one class is labeled as a “positive class” (=1) and all the other classes as “negative classes”
(=0), then we train the corresponding classification model. The main merit of this strategy is
its interpretability since it allows gaining valuable knowledge about a given class by check-
ing its corresponding model. Additionally, this strategy is commonly used and usually set
as a default choice for Machine Learning (ML) models to handle multi-class classification
problem (learn 2006b; Rocha and Goldenstein 2013).

3.5.1 Overview of NSGA-II

In this paper, we use NSGA-II as an intelligent search-based algorithm, that has been widely
adopted to solve many software engineering problems (Harman et al. 2012; Harman et al.
2010; Saidani et al. 2020; Mkaouer et al. 2015; Ouni et al. 2016; Ouni 2020; Saidani et al.
2021; Ouni et al. 2012), to generate binary detection rules of each release class.

NSGA-II starts by randomly creating an initial population of individuals encoded using
a specific representation. Then, a child population is generated from the population of par-
ents using genetic operators (crossover and mutation). The whole population (that contains
children and parents) is sorted according to their dominance level (Deb et al. 2002) and only
the best N solutions are chosen (N is the population size, which is a parameter to be set).

Page 13 of 42 81Empir Software Eng (2022) 27: 81

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Then, a new population is created using selection, crossover and mutation. This process will
be repeated until reaching the last iteration according to a stop criteria.

3.5.2 Adaptation of NSGA-II for Binary Classification

To adopt a search algorithm to a given problem, a set of elements need to be defined. In fact,
it is insufficient to merely apply a search technique out of the box, as problem-specific adap-
tations need to be defined to ensure the best performance such as (i) solution representation,
(ii) solution evolution, and (iii) solution evaluation.

Solution representation In MOGP, a candidate solution, i.e., a detection rule, is repre-
sented as an IF–THEN rules with the following structure (Saidani et al. 2020; Ouni et al.
2013; Kessentini and Ouni 2017; Ouni et al. 2015):

IF “Combination of metrics with their thresholds” THEN “RESULT”.

The antecedent of the IF statement describes the conditions, i.e., pairs of metrics and
their threshold values connected with mathematical operators (e.g., =, >,≥, <, ≤), under
which a release is considered as good, bad, or neutral. These pairs are combined using logic
operators (OR, AND in our formulation). Figure 5 provides an example of a solution. This
rule, represented by a binary tree, detects a bad release if it fulfills the situation where (1) the
minimum change in the required version of SDK (Min-SDK chang) equal to 1% or (2) the
Ad library size (Nlib) is greater or equals to 5 or (3) the number of dangerous permissions
(related to security) (dang perm) is greater or equals to 2.

IFMin-SDK chang =1 OR Nlib ≥ 5 OR dang perm ≥ 2
THEN BAD release.

To generate the initial population, we start by randomly selecting a set of metrics and
their threshold values and then assign them different nodes of a given individual, i.e., trees.
To control for complexity, each solution size, i.e. the tree’s length, should vary between
lower and upper-bound limits based on the total number of considered metrics to use within
the detection rule. More precisely, for each solution, we assign:

– For each leaf node one metric and its corresponding threshold. The latter is gener-
ated randomly between lower and upper bounds according to the values ranging of the
related metric.

– Each internal node (function) is randomly selected between AND and OR operators.

Genetic operators We formulated our genetic operators as follows:

Mutation In MOGP, the mutation can be applied to (i) a terminal or (ii) a function node.
First, the mutation operator randomly selects a node in the tree to be mutated. Then, if the

Fig. 5 A simplified example of a
solution representation

Min-sdk_chang =1 Nlib >=5

OR

dang_perm >=2OR

81 Page 14 of 42 Empir Software Eng (2022) 27: 81

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Before muta�on A�er muta�on

Min-sdk_chang =1 Nlib >=5

OR

dang_perm >=2OR

targ_sdk = 5 Nlib >=5

OR

dang_perm >=2OR

Fig. 6 An example of mutation operator

selected node is a terminal, it will be then replaced by another terminal (i.e., other metric or
other threshold value, or both), and if it is a function node (i.e., AND, OR operators), it will
be replaced by a new random function. Then, the node and its sub-tree will be replaced by
the new randomly generated sub-tree. Figure 6 depicts an example of a mutation process,
in which we replace the terminal containing Min-SDK chang feature, by another terminal
composed of the condition targ sdk = 5. Thus, we obtain the new following rule:

Crossover For MOGP, we use the standard single-point crossover operator where two par-
ents are selected and a sub-tree is extracted from each one. Figure 7 depicts an example of
the crossover process. In fact, rules P1 and P2 are combined to generate two new rules. For
instance, the new rule C2 will be:

Solution Evaluation Appropriate fitness function, also called objective function, should be
defined to evaluate how good is a candidate solution. For the binary classification problem,
we seek to optimize the two following objective functions:

targ_sdk >= 22min_sdk >=5

P1

P2

Nintent >= 7

OR

Nlib >= 3

dang_perm >=2

AND

OR

targ_sdk >= 22

C1

C2

OR

Nlib >= 3

AND

OR

dang_perm >=2

Nintent >= 7

min_sdk >=5

Fig. 7 An example of crossover operator

Page 15 of 42 81Empir Software Eng (2022) 27: 81

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1. Maximize the coverage of expected positive class instances over the actual list of pos-
itive class instances known as the True Positive Rate (TPR), or also the probability of
detection (PD).

T PR(S)= {DetectedPositiveclassinstances} ∩ {ExpectedPositiveclassinstances}
{DetectedPositiveclassinstances}

2. Minimize the coverage of actual non-skipped commits that are incorrectly classified as
skipped also known as False Positive Rate (FPR), or the probability of false alarm (FP).

FPR(S)= {DetectedPositiveclassinstances} ∩ {ExpectedNegativeclassinstances}
{DetectedPositiveclassinstances}

Additionally, since NSGA-II returns a set of optimal (i.e. non-dominated) solutions in
the Pareto front without ranking, we extract a single best solution which is the nearest to the
ideal solution known as True Pareto in which TPR value equals to 1 and FPR equals to 0.
Formally, the distance is computed in terms of Euclidean Distance (Ouni et al. 2016; Ouni
et al. 2013; Saidani et al. 2020) as follows:

BestSol = n

min
i=1

√
(1 − T PR[i])2 + FPR[i]2 (2)

where n represents the cardinality the Pareto front generated by NSGA-II.

3.6 Step D: Detection Phase

After the optimal binary rules are built in the training phase, they will be then used to detect
the corresponding label for a new app release. This step takes as input the set of features
extracted from a given release using the feature extraction module. As output, it returns the
label, i.e., good, bad, or neutral based on the majority voting principle.

3.6.1 Majority Voting

Each detection rule returns (i) either +1 (to indicate that the input belongs to its class) or -1
(to indicate that the input does not belong to its class), and (ii) a confidence level measured
by its fitness function value (the average between both objective function scores). Thus, we
obtain for each class a two-dimension vector containing the weighted sum (i.e., multiplied
by the confidence level measures) of positive and negative votes as its entries. However,
two situations should be taken into consideration. First, in the case of conflict, i.e., two or
more rules return +1, the final label is assigned to the class having the highest confidence.
Second, when no rule recognizes the input as its class (all the rules return -1), we assign the
label to the class associated with the most negative confidence level.

4 Empirical Study Design

In this section, we describe the design of our empirical study to evaluate our APPTRACKER

approach. Figure 8 provides an overview of our experimental design. First, we evaluate the
predictive performance of our APPTRACKER approach based on NSGA-II against mono-
objective search and state-of-the art machine learning algorithms to address the two first
research questions. We run non-deterministic algorithms used in this empirical study 31

81 Page 16 of 42 Empir Software Eng (2022) 27: 81

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Release
Dataset

Corpus of RQ1
(within-project)

R
es

ul
ts

 o
f

R
Q

1

Corpus of RQ2
(cross-project)

Permutation
Feature

Importance

Best Models of
App-Tracker
(RQ1+RQ2)

Features Ranking using
the Scott-Knott test

Results of RQ3

Goal 2: Analysis of bad updates (RQ3)

Goal 1: Performance Evaluation (RQ1+RQ2)

Construct
Classification

Modes
Models of

App-Tracker

Compute
performance

Statistical
Tests

Models of
Baseline

approaches

Repeat 31 times for each app

te
s�

ng
tr

ai
ni

ng
Training apps (same category)

Target project

R
es

ul
ts

 o
f

R
Q

2

5-split time series
validation

Fig. 8 An overview of our experimental design

times to deal with their stochastic nature as suggested by Arcuri and Briand (2011). After-
ward, we conduct an experiment to qualitatively investigate the most important metrics for
our approach. In the following, we describe each step in detail.

To facilitate the replication and extension of our study, we provide the experimental
material in our online replication package (Dataset for bad releases detection 2021).

4.1 Research Questions

We designed our experiments to answer three research questions (RQs):

– RQ1 (Within-project evaluation). How does our APPTRACKER approach perform
compared to baseline techniques in within-project scenario?

– RQ2 (Cross-project evaluation). How effective is our APPTRACKER approach when
applied in cross-project scenario?

– RQ3 (Features importance analysis).What are the most important features for our
tool?

4.2 Predictive performance (RQ1-2)

The first objective of our experimental study is to assess the efficiency of our APPTRACKER

approach in solving the three-class classification of apps releases problem considering two
different scenarios: within-project (RQ1) and cross-project validation (RQ2).

4.2.1 Evaluation Scenarios and Apps Filtering

In RQ1, we conduct a time-aware validation in which the chronological order is considered,
similar to previous studies (Yan et al. 2020; Qiu et al. 2020; Yan et al. 2020; Huang et al.
2017; Yang et al. 2016). Specifically, we consider time series validation4 which is a variation
of k-fold where train/test sets are observed at fixed time intervals. In the kth split, the time

4https://scikit-learn.org/stable/modules/generated/sklearn.model selection.TimeSeriesSplit.html

Page 17 of 42 81Empir Software Eng (2022) 27: 81

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Table 4 Statistics about RQ1
corpus # of apps 19

of updates 2,518

bad updates ratio 0.31

neutral updates ratio 0.36

good updates ratio 0.33

series validation returns first k folds as the train set and the (k + 1)th fold as the test set.
In this study, k is set to 5, the default value. Since this scenario is only useful for apps
with sufficient historical data, we consider only apps that had at least 100 release versions.
Additionally, we only select apps with at least one representation of each class in both
training and testing sets. This filtering left 19 apps with 2,518 versions. An overview of the
studied apps is reported in Table 4.

Then, in RQ2, we investigate the extent to which our approach can be generalized
through a cross-project prediction. In fact, mobile apps might not always have sufficient his-
torical labeled data to build a classifier (Xia et al. 2016) (especially with small or new apps
in the market), which may prevent the mobile app team from using within-project prediction
tools, such as APPTRACKER . Hence, cross-project validation is a common state-of-the-art
technique to solve the lack of training data in software engineering (Xia et al. 2017). To
evaluate our approach on the cross-project scenario, we train each app based on the other
collected apps from the same category. Then, we test our APPTRACKER approach on the
target app data. Training on apps from the same category is useful for developers as this
would help them track the bad updates of their competitors and attempt to avoid them (e.g.
privacy violations).

Similar to RQ1, we only study apps with at least one instance of each update class in
training/testing sets which left 1,313 apps with a total of 48,395 updates as shown in Table 5.

Note that for both RQ1 and RQ2, all the studied approaches are evaluated on unseen data
(i.e. the testing data is not used at the training phase).

4.2.2 Baseline Approaches

As a basis for comparisons with our MOGP method, we have employed representative fam-
ilies of classification, a GP-based approach and common Machine Learning (ML) families
that are widely used in solving several software engineering problems. In each algorithms
family, we consider two approaches, discretized-based classifiers where the instances are
classified into one of the three classes and regression-based classifiers that build a regression
model first based on the negativity ratio, then perform classification according to Table 1.
The considered baselines are presented in Table 6.

Furthermore, as ML models are sensitive to the scale of the inputs, the data are normal-
ized in the range [0, 1] by using feature scaling. In addition, to mitigate the issue related

Table 5 Statistics about RQ2
corpus. # of apps 1,313

of updates 48,395

bad updates ratio 0.35

neutral updates ratio 0.30

good updates ratio 0.35

81 Page 18 of 42 Empir Software Eng (2022) 27: 81

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Table 6 Selected baselines from each family

Family Classifier Regression-based classifier

Decision-
based

- Mono-objective Genetic Programming (mono-GP): This
technique has been widely used in various multi-class subclass
problems (Kishore et al. 2000; Loveard and Ciesielski 2001;
Smart and Zhang 2005; Chen and Lu 2007; Espejo et al. 2009;
Darwish et al. 2015). Hence, it is important to assess our multi-
objective formulation against mono-objective GP (called GP-
multi). If considering separate conflicting objectives fails to
outperform aggregating them into a single objective function,
then the proposed formulation is inadequate. In this evaluation,
we adopt GP to our problem similarly by relying on one-vs-all
method.

None

- Decision tree: Similarly to GP-based techniques, this model
generates decision trees consisting of nodes and branches. In
this tree we can go from conditions about an instance (rep-
resented in the branches) to conclusions about the instance’s
target value (leaf nodes). The algorithm can naturally handle
multi-class classification problems.

- Regression Tree (RT): In
regression, the predicted out-
come is the negativity ratio then
converted to their corresponding
class value.

Statistical - Logistic Regression (Log-Reg): uses a sigmoid function as a
learning model, then it optimizes a cost function that measures
the likelihood of the data given the classifier’s class probability
estimates; then for the multi-class problem, one-vs-all solution
can be is used.

- Linear Regression (LinReg):
a linear approach for mod-
elling the relationship between a
scalar response and one or more
explanatory variable.

- Bayes Network:The model is constructed based on Bayes’
Theorem and can be naturally extended to the multi-class
subclass.

None

Support-
Vector
Machines
(SVM)

- Support Vector Classification (SVC): A classifier that par-
titions the data in such a way that it maximizes the margin
of separation between the decision boundary and the class
instances. SVC can be generalized to multi-class case using
one-vs-all classification strategy.

- SVM regression (SVMR):
uses the same principle as the
SVC but it predicts discrete val-
ues (i.e. negativity ration) then
convert them to their correspond-
ing class values.

Ensemble
Learn-
ing
(EL)

- Random Forest (RF): A bagging-based EL approach used
to train other DT by dividing the data into N subsets of the
same size, and then each subset is used to create a DT classifier
(called estimator) and uses averaging to improve the predictive
accuracy. Finally, the whole classification model is built by
aggregating these estimators.

- RF regressor (RFR): For
regression tasks, the mean or
average prediction of the indi-
vidual trees is returned. Then,
the discrete values (i.e. negativ-
ity ratio) are converted to their
correspon–ding classes (categor-
ical numbers).

- eXtreme Gradient Boosting (XGB): a boosting-based EL
approach that improves the performance of separate DT clas-
sifiers by combining them into a composite whole. The classi-
fiers are learned sequentially, aiming to reduce the errors of the
previously modeled ones. This algorithm supports both binary
and multi-class classifications and has specifically shown suc-
cess in treating multi-class imbalanced problem (Tanha et al.
2020; Chen et al. 2015).

- XGBRegressor (XGBR): uses
the same principle as the XGB
but it predicts discrete values (i.e.
negativity ration) then convert
them to their corresponding class
values.

Nearest
Neigh-
bor

- K-Nearest Neighbor (KNN): A simple well-known ML
classifier that is based on the distances between the patternsin
the feature space. Specifically, a pattern is classified according
to the majority class of its K-nearest neighbors. The algorithm
can be naturally extended to multi-class subclass.

- KNN regressor (KNNR): uses
the same principle as the KNN
but it predicts discrete values (i.e.
negativity ration) then convert
them to their corresponding class
values.

Page 19 of 42 81Empir Software Eng (2022) 27: 81

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

to the imbalanced nature of the dataset, we rely on Synthetic Minority Oversampling Tech-
nique (SMOTE) method (Chawla et al. 2002), to resample the training data. Note that with
XGB there is no need for resampling as it is internally handled by the algorithm similarly to
our approach. Also, it is worth to mention that we only resample the training data in order
to assess these algorithms in a real-world situation.

ML and XGB models are implemented using Scikit-learn (learn 2006a) and XGB
(XGBoost 2006) Python libraries, respectively. As for the search-based algorithms, we used
MOEA Framework,5 an open-source framework for developing and experimenting with
search-based algorithms (Hadka).

4.2.3 Evaluation Metrics

To compare the predictive performance of APPTRACKER with other techniques, we employ
for binary classification, F1-score, the commonly used metric in predictive models compar-
ison (Hastie et al. 2009) which is defined as the harmonic mean of the precision and recall
of prediction. The Precision measures to the ability of a classifier not to label as positive a
sample that is negative, while Recall measure the ability of a classifier to find all the posi-
tive samples. We also use Area Under the ROC Curve (AUC) which indicates how much a
prediction model/rule is capable of distinguishing between postive and negative classes. In
our study, we consider the following binary measures:

– True Positive (TP): the number of positive class instances that are correctly classified;
– True Negative (TN): the number of negative instances that are correctly classified as CI

negative;
– False Positive (FP): the number of negative instances classified as positive;
– False Negative (FN): the number of positive instances that identified as negative.
– n, m and p represents the number of instances of bad, good and neutral release classes,

respectively.

For multi-class classification, we consider Matthews Correlation Coefficient (MCC)
(Chicco and Jurman 2020) computed as a correlation coefficient between the observed and
predicted classifications. Additionally, we calculate the Standard (also called macro) aver-
ages of the binary metrics as done by previous studies (Sokolova and Lapalme 2009; Branco
et al. 2017; Hossin and Sulaiman 2015) and the Weighted (i.e., weighted by the number
of instances per class) averages in order to account for class imbalance (Evans et al. 2019;
Eberius et al. 2015; Hassan et al. 2020). All the used measures are defined in Table 7.

4.2.4 Dealing with Stochastic Approaches

Due to the stochastic nature of genetic algorithms, decision tree (DT) and random forest
(RF) algorithms, we compare their performance by performing 31 independent runs for
each experimentation then we choose the rule/model with the median value as suggested in
Arcuri and Briand (2011) work.

5http://moeaframework.org/

81 Page 20 of 42 Empir Software Eng (2022) 27: 81

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Ta
bl
e
7

Pe
rf

or
m

an
ce

m
ea

su
re

s

C
la

ss
if

ic
at

io
n

M
ea

su
re

Fo
rm

ul
a

B
in

ar
y

R
ec

al
l

T
P

T
P

+F
N

Pr
ec

is
io

n
T

P
T

P
+F

P

F1
-s

co
re

2
∗

P
r
e
c
is

io
n
∗R

e
c
a
ll

P
r
e
c
is

io
n
+R

e
c
a
ll

A
U

C
1

+
T

P
T

P
+F

N
−

F
P

F
P

+T
N

2

T
hr

ee
-c

la
ss

St
an

da
rd

-F
1

F
1 b

a
d
+F

1 g
o
o
d
+F

1 n
e
u
tr

a
l

3

St
an

da
rd

-A
U

C
A

U
C

b
a
d
+A

U
C

g
o
o
d
+A

U
C

n
e
u
tr

a
l

3

St
an

da
rd

-P
re

ci
si

on
P

r
e
c
is

io
n

b
a
d
+P

r
e
c
is

io
n

g
o
o
d
+P

r
e
c
is

io
n

n
e
u
tr

a
l

3

St
an

da
rd

-R
ec

al
l

R
e
c
a
ll

b
a
d
+R

e
c
a
ll

g
o
o
d
+R

e
c
a
ll

n
e
u
tr

a
l

3

W
ei

gh
te

d-
F1

F
1 b

a
d
∗n

+F
1 g

o
o
d
∗m

+F
1 n

e
u
tr

a
l∗p

n
+m

+p
W

ei
gh

te
d-

A
U

C
A

U
C

b
a
d
∗n

+A
U

C
g
o
o
d
∗m

+A
U

C
n
e
u
tr

a
l∗p

n
+m

+p
W

ei
gh

te
d-

Pr
ec

is
io

n
P

r
e
c
is

io
n

b
a
d
∗n

+P
r
e
c
is

io
n

g
o
o
d
∗m

+P
r
e
c
is

io
n

n
e
u
tr

a
l∗p

n
+m

+p
W

ei
gh

te
d-

R
ec

al
l

R
e
c
a
ll

b
a
d
∗n

+R
e
c
a
ll

g
o
o
d
∗m

+R
e
c
a
ll

n
e
u
tr

a
l∗p

n
+m

+p
M

C
C

[(t
p

b
a
d
+t

p
n
e
u
tr

a
l+

tp
g
o
o
d
)∗(

n
+m

+p
)]−

[(f
p

b
a
d
+t

p
b
a
d
)∗n

+(
f
p

g
o
o
d
+t

p
g
o
o
d
)∗m

+(
f
p

n
e
u
tr

a
l+

tp
n
e
u
tr

a
l)

∗p
]

√ [(n
+m

+p
)2

−[
(f

p
b
a
d
+t

p
b
a
d
)2

+(
f
p

g
o
o
d
+t

p
g
o
o
d
)2

+(
f
p

n
e
u
tr

a
l+

tp
n
e
u
tr

a
l)

2
]]∗

[(n
+m

+p
)2

−[
(n

2
+m

2
+p

2
)]]

Page 21 of 42 81Empir Software Eng (2022) 27: 81

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

4.2.5 Statistical Tests Methods Used

Before selecting the statistical tests, we should first assess the data normality. To this end,
we employ Shapiro-Wilk’s W test (Royston 1992) to assess whether the data distribution is
normal (i.e., ρ−value ≥ 0.05). Using this test, We found that ρ−value < 0.05 for all the
used metrics suggesting that a non-parametric test should be used.

In order to provide support for the conclusions derived from the obtained results, we use
Wilcoxon signed rank test (Wilcoxon et al. 1970) with a 95% confidence level while using
Bonferroni correction (Armstrong 2014). Vargha-Delaney A (VDA) (Vargha and Delaney
2000) is also used to measure the effect size. This non-parametric method is widely rec-
ommended in SBSE context (Nejati and Gay 2019) and indicates the probability that one
technique will outperform another technique in a given performance measure. When com-
paring the performance of two techniques, a Vargha-Delaney A measure equals to 0.5
indicates that the two techniques are of comparable performance (i.e., do not differ), while
a measure above or below 0.5 indicates that one of the techniques outperforms the other
(Thomas et al. 2014). The Vargha-Delaney statistic also classifies the magnitude of the
obtained effect size value into four different levels: (i) negligible (ii), small, (iii) medium,
and (iv) large (Scalabrino et al. 2016).

4.2.6 Parameters’ Tuning and Setting

One of the most important aspects of research on prediction approaches is parameters’
tuning which has a critical impact on the algorithm’s performance (Arcuri and Fraser 2011).
This is also compulsory when using ML techniques (Tantithamthavorn et al. 2018b). There
is no optimal parameters setting to solve all problems, therefore, we used a trial-and-error
method to select the hyper-parameters (Harman et al. 2012) to handle parameters’ tuning
for search-based algorithms which is a common practice in SBSE (Harman et al. 2012).
These parameters are fixed as follows: population size = 100; maximum # of generations =
500; crossover probability =0.7; and mutation probability = 0.1.

As for ML techniques, we employed Grid Search (GS)(Scikit-learn.org 2006), an
exhaustive search-based tuning method widely used in practice. In order to facilitate the
replication of our results, we provide the selected main parameters and their respective
search spaces for ML techniques as shown in Table 8. Please note that parameters’ tun-
ing is only applied to the training set and hence we cannot guarantee an optimal result on
the testing set; as the parameters’ tuning may lead to over-fitting (Tantithamthavorn et al.
2018a).

4.3 Features’ Importance Analysis (RQ3)

The second goal of our empirical study is to analyze the most important features. This
analysis provides actionable insights for (1) practitioners who might want to identify the fac-
tors that can help them maintaining/improving the rating of their apps, and (2) researchers
who are interested in understanding which/how features can be influential in mobile app
releasing activities.

To address RQ3, we use Permutation Feature Importance (PFI) technique, introduced by
Breiman (2001) and Fisher et al. (2019), to discover which features are the most useful for
prediction. The importance of a certain feature is computed as the degree of change in the
prediction performance in terms of Gini measure (defined as 2 * AUC - 1). Since the dataset
may contain multicollinear features, the permutation importance can perform poorly. Hence,

81 Page 22 of 42 Empir Software Eng (2022) 27: 81

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Table 8 Configuration space for the hyper-parameters of ML models

Model Hyper-parameters Search Space

SVC, SVM-Reg C [1,10]

kernel range [‘linear’, ‘rbf’]

max of iterations range [200,50000]

DT, RT Criterion [‘gini’, ‘entropy’]

max depth range [10,100], None

min samples split range [2,10], None

min samples leaf range [1,5], None

max features [‘sqrt’, ‘log2’, None]

RF, RF-Reg Number of estimators range [50,600]

max depth range [10,100], None

Criterion [‘gini’, ‘entropy’]

min samples split range [2,10], None

min samples leaf range [1,5], None

max features [‘sqrt’, ‘log2’, None]

XGB, XGB-Reg max depth range [10,100], None

eta [0.01,0.7]

min child weight [1,5,10]

num of estimators [50,600]

learning rate [0.01,0.3]

NB alpha [0,1]

binarize [0.0,0.5,1.0,None]

fit prior True or False

LR max of iterations range [200,50000]

penalty [‘l1’,‘l2’,‘none’]

solver [’newtoncg’, ‘lbfgs’, ‘sag’,‘saga’,‘liblinear’]

Lin-Reg fit intercept True or False

normalize True or False

copy X True or False

positive True or False

KNN, KNN-Reg number of neighbors range [2,5]

algorithm [‘auto’, ‘ball tree’, ‘kd tree’, ‘brute’]

leaf size range [1,50]

weights [‘uniform’,‘distance’]

to handle multicollinearity issues, we perform hierarchical clustering on the Spearman rank-
order correlations (Zar 2005), and keep only one single feature from each cluster. Once the
(PFI) is computed, we rank the features using Scott-Knott algorithm (Tantithamthavorn et al.
2017; 2018a) into statistically homogeneous groups so that the obtained rankings within the
same group are not significantly different (i.e., ρ−value ≥ 0.05). Scott-Knott algorithm has

Page 23 of 42 81Empir Software Eng (2022) 27: 81

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

been widely applied to different software engineering domains such as identifying the most
influential variables (Kabinna et al. 2018; Li et al. 2017; Tian et al. 2015; Tantithamthavorn
et al. 2015). It should be noted that we use the non-parametric version of of the Scott-Knott
algorithm that does not require the assumptions of normal distribution.

5 Empirical Study Results

5.1 Results of RQ1 (Within-Project Validation)

Table 9 reports the median F1, AUC and MCC scores achieved by APPTRACKER compared
to the baseline approaches; while Table 10 shows the statistical tests comparison using the
Wilcoxon signed rank test and Vargha-Delaney A estimate and effect size. In addition, we
show the different distributions of the studied scores in Fig. 9.

As shown in Table 9, our approach achieved satisfactory results for standard and
weighted measures and can reach 81% and 90% in terms of standard and weighted F1
measures, respectively (cf. Fig. 10). More specifically we obtained in median 61% for
Weighted-F1, 66% for Weighted-Precision, 62% for Weighted-Recall and %67 in terms of
Weighted-AUC. With regards to standard scores, we obtained 52% in terms of Standard-
F1, 58% for Standard-Precision, 62% for Standard-Recall and 68% for Standard-AUC. The
results are well above 1/3 (33.33 %) which is the random chance of guessing that an update
belongs to one of three classes labels (i.e., in a three-class classification problem). To get
more insights, we investigated the performance of each binary classification. As Fig. 10
demonstrates, the binary classification of bad updates performs better compared to others

Table 9 Performance of APPTRACKER vs. the state-of-the-art within-project validation (Median scores
among the studied apps in percentage)

Algorithm MCC AUC F1

Standard Weighted Standard Weighted

APPTRACKER 35 68 67 52 61

mono-GP 16 57 57 37 45

LR 11 56 55 34 39

KNN 6 53 53 29 36

SVC 5 53 52 29 33

RF 4 52 52 28 32

BNB 2 51 51 27 30

XGB 2 51 51 29 35

RT 2 48 48 24 27

KNN-reg 1 46 47 19 24

DT 0.4 50 50 24 32

RT 0.2 49 48 25 29

SVR-reg 0 47 47 19 24

Lin-reg 0 49 49 25 30

RF-reg 0 43 44 15 23

XGB-reg -1 46 45 22 27

81 Page 24 of 42 Empir Software Eng (2022) 27: 81

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Ta
bl
e
10

St
at

is
tic

al
te

st
s

re
su

lts
of

A
P

P
T

R
A

C
K

E
R

co
m

pa
re

d
to

M
L

te
ch

ni
qu

es
(w

ith
in

-p
ro

je
ct

)

M
et

ri
c

F1
A

U
C

M
C

C

W
ei

gh
te

d
St

an
da

rd
W

ei
gh

te
d

St
an

da
rd

p-
va

lu
e

A
E

ff
ec

t
p-

va
lu

e
A

E
ff

ec
t

p-
va

lu
e

A
E

ff
ec

t
p-

va
lu

e
A

E
ff

ec
t

p-
va

lu
e

A
E

ff
ec

t

vs
.L

R
<

10
−1

6
0.

85
L

<
10

−1
6

0.
88

L
<

10
−1

6
0.

83
L

<
10

−1
6

0.
84

L
<

10
−1

6
0.

88
L

vs
.S
V
C

<
10

−1
6

0.
87

L
<

10
−1

6
0.

92
L

<
10

−1
6

0.
88

L
<

10
−1

6
0.

91
L

<
10

−1
6

0.
92

L

vs
.K

N
N

<
10

−1
6

0.
89

L
<

10
−1

6
0.

92
L

<
10

−1
6

0.
89

L
<

10
−1

6
0.

89
L

<
10

−1
6

0.
92

L

vs
.X

G
B

<
10

−1
6

0.
91

L
<

10
−1

6
0.

93
L

<
10

−1
6

0.
89

L
<

10
−1

6
0.

91
L

<
10

−1
6

0.
91

L

vs
.D

T
<

10
−1

6
0.

93
L

<
10

−1
6

0.
97

L
<

10
−1

6
0.

91
L

<
10

−1
6

0.
92

L
<

10
−1

6
0.

94
L

vs
.R

F
<

10
−1

6
0.

91
L

<
10

−1
6

0.
95

L
<

10
−1

6
0.

90
L

<
10

−1
6

0.
92

L
<

10
−1

6
0.

92
L

vs
.B

N
B

<
10

−1
6

0.
91

L
<

10
−1

6
0.

94
L

<
10

−1
6

0.
92

L
<

10
−1

6
0.

92
L

<
10

−1
6

0.
93

L

vs
.m

on
o

<
10

−1
6

0.
72

M
<

10
−1

6
0.

86
L

<
10

−1
6

0.
80

L
<

10
−1

6
0.

81
L

<
10

−1
6

0.
80

L

vs
.S
V
M
-R
eg

<
10

−1
6

1
L

<
10

−1
6

0.
9

L
<

10
−1

6
1

L
<

10
−1

6
1

L
<

10
−1

6
1

L

vs
.X

G
B

<
10

−1
6

0.
91

L
<

10
−1

6
0.

89
L

<
10

−1
6

0.
91

L
<

10
−1

6
0.

93
L

<
10

−1
6

0.
91

L

vs
.X

G
B
-R
eg

<
10

−1
6

0.
9

L
<

10
−1

6
0.

9
L

<
10

−1
6

1
L

<
10

−1
6

1
L

<
10

−1
6

1
L

vs
.K

N
N
-R
eg

<
10

−1
6

0.
9

L
<

10
−1

6
0.

9
L

<
10

−1
6

1
L

<
10

−1
6

1
L

<
10

−1
6

1
L

vs
.L

in
-R
eg

<
10

−1
6

0.
9

L
<

10
−1

6
0.

9
L

<
10

−1
6

0.
9

L
<

10
−1

6
1

L
<

10
−1

6
0.

9
L

vs
.R
F
-R
eg

<
10

−1
6

1
L

<
10

−1
6

0.
9

L
<

10
−1

6
1

L
<

10
−1

6
1

L
<

10
−1

6
1

L

vs
.R

T
<

10
−1

6
0.

9
L

<
10

−1
6

0.
9

L
<

10
−1

6
0.

9
L

<
10

−1
6

1
L

<
10

−1
6

1
L

L
:L

ar
ge

,M
:M

ed
iu

m
,S

:S
m

al
l,

N
:N

eg
lig

ib
le

Page 25 of 42 81Empir Software Eng (2022) 27: 81

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Fig. 9 Boxplots comparing scores of APPTRACKER against baseline approaches within-project validation

by reaching in median 57% in terms of F1bad , 60% for Precisionbad , 56% for Recallbad

and 68% for AUCbad respectively. However, the statistical difference tests reveal that the
scores are comparable for the three classes and this is applied to all the studied metrics (i.e.
F1, Precision, recall and AUC).

Bad Good Neutral Standard Weighted

0.00

0.25

0.50

0.75

1.00

metric AUC F1 Precision Recall

Fig. 10 Results of APPTRACKER within-project validation

81 Page 26 of 42 Empir Software Eng (2022) 27: 81

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Table 11 Performance of APPTRACKER vs. the state-of-the-art for cross-project validation (Median scores
among the studied apps in percentage)

Algorithm MCC AUC F1

Standard Weighted Standard Weighted

APPTRACKER 26 63 64 47 56

SVC 17 59 59 41 47

LR 16 58 59 40 45

RF 15 57 57 38 43

XGB 15 58 57 39 44

BNB 14 57 57 38 44

SVM-reg 10 56 57 36 40

mono-GP 9 54 54 34 43

Lin-reg 8 55 56 33 36

KNN 8 54 55 35 40

KNN-reg 3 51 52 29 33

DT 3 51 51 29 33

XGB-reg 0 43 40 19 19

RF-reg 0 33 33 0 0

RT 0 46 45 23 24

In comparison with the mono-objective formulation, we clearly see that our MOGP tech-
nique outperforms mono-GP with a substantial improvement for all the studied metrics. For
example, we achieved an improvement of 15% and 16% for the Standard and Weighted
F1 measures, respectively. Moreover, the statistical test results (Table 10) reveal that over
2,945 runs (5 validation folds x 19 app x 31 repetitions), the difference in scores is signifi-
cant with large VDA effect sizes. These findings confirm that multi-objective formulation
is adequate for this problem comparing to aggregating the objectives into a single fitness
function. Hence, our problem formulation passes the “sanity check” in this RQ.

Compared to ML techniques, we find that our APPTRACKER approach is advantageous
over the studied techniques. For instance, APPTRACKER provides an improvement of at
least 24% in terms of MCC over the best ML algorithm (LR). Additionally, the statistical
analysis underlines the significant differences with large VDA effect sizes (cf. Table 10).
Overall, the results reveal that APPTRACKER can reach the best balance between the three
class accuracies. It is worth noting that all ML techniques are trained using re-sampled
training sets unlike in NSGA-II which uses the original data without sampling. These
results confirm that the multi-objective formulation is efficient in addressing with the data
imbalance problem (Bhowan et al. 2010; Saidani et al. 2020).

Finally, it is worth to note, the regression-based classifiers perform less than other ML
techniques (The discretized classifiers used in the study) as well as APPTRACKER . We also
performed statistical test between APPTRACKER and the other ML approaches. We observe
that APPTRACKER statistically outperforms other ML approaches (with a large effect size in
the majority cases). Tables 10 and 12 present the statistical test results for within project and
cross-project scenarios, respectively. These results indicate that the discretized classification
is more adequate for the three-class classification of mobile releases.

Page 27 of 42 81Empir Software Eng (2022) 27: 81

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Ta
bl
e
12

St
at

is
tic

al
te

st
s

re
su

lts
of

A
P

P
T

R
A

C
K

E
R

co
m

pa
re

d
to

M
L

te
ch

ni
qu

es
fo

r
th

e
cr

os
s-

pr
oj

ec
ts

ce
na

ri
o

M
et

ri
c

F1
A

U
C

M
C

C

W
ei

gh
te

d
St

an
da

rd
W

ei
gh

te
d

St
an

da
rd

p-
va

lu
e

A
E

ff
ec

t
p-

va
lu

e
A

E
ff

ec
t

p-
va

lu
e

A
E

ff
ec

t
p-

va
lu

e
A

E
ff

ec
t

p-
va

lu
e

A
E

ff
ec

t

vs
.B

N
B

<
10

−1
6

0.
75

L
<

10
−1

6
0.

70
M

<
10

−1
6

0.
69

M
<

10
−1

6
0.

71
M

<
10

−1
6

0.
69

M

vs
.D

T
<

10
−1

6
0.

90
L

<
10

−1
6

0.
85

L
<

10
−1

6
0.

83
L

<
10

−1
6

0.
86

L
<

10
−1

6
0.

84
L

vs
.K

N
N

<
10

−1
6

0.
83

L
<

10
−1

6
0.

77
L

<
10

−1
6

0.
75

L
<

10
−1

6
0.

76
L

<
10

−1
6

0.
77

L

vs
.L

R
<

10
−1

6
0.

74
M

<
10

−1
6

0.
66

S
<

10
−1

6
0.

64
S

<
10

−1
6

0.
67

M
<

10
−1

6
0.

66
S

vs
.m

on
o-
G
P

<
10

−1
6

0.
77

L
<

10
−1

6
0.

76
L

<
10

−1
6

0.
77

L
<

10
−1

6
0.

80
L

<
10

−1
6

0.
78

L

vs
.R

F
<

10
−1

6
0.

77
L

<
10

−1
6

0.
69

M
<

10
−1

6
0.

67
M

<
10

−1
6

0.
70

M
<

10
−1

6
0.

68
M

vs
.S
V
C

<
10

−1
6

0.
71

M
<

10
−1

6
0.

65
S

<
10

−1
6

0.
63

S
<

10
−1

6
0.

65
S

<
10

−1
6

0.
65

S

vs
.w

it
hi
n

0.
01

0.
42

S
0.
03

0.
43

N
10

−7
0.

34
S

10
−5

0.
37

S
10

−7
0.

34
S

vs
.X

G
B

<
10

−1
6

0.
76

L
<

10
−1

6
0.

69
M

<
10

−1
6

0.
66

S
<

10
−1

6
0.

70
M

<
10

−1
6

0.
67

M

vs
.K

N
N
-r
eg

<
10

−1
6

0.
90

L
<

10
−1

6
0.

82
L

<
10

−1
6

0.
81

L
<

10
−1

6
0.

85
L

<
10

−1
6

0.
84

L

vs
.L

in
-r
eg

<
10

−1
6

0.
87

L
<

10
−1

6
0.

73
M

<
10

−1
6

0.
73

M
<

10
−1

6
0.

80
L

<
10

−1
6

0.
78

L

vs
.R

F
-r
eg

<
10

−1
6

0.
95

L
<

10
−1

6
0.

88
L

<
10

−1
6

0.
88

L
<

10
−1

6
0.

92
L

<
10

−1
6

0.
87

L

vs
.R

T
<

10
−1

6
0.

94
L

<
10

−1
6

0.
87

L
<

10
−1

6
0.

86
L

<
10

−1
6

0.
91

L
<

10
−1

6
0.

88
L

vs
.S
V
R
-r
eg

<
10

−1
6

0.
82

L
<

10
−1

6
0.

71
M

<
10

−1
6

0.
71

M
<

10
−1

6
0.

75
L

<
10

−1
6

0.
75

L

vs
.X

G
B
-r
eg

<
10

−1
6

0.
94

L
<

10
−1

6
0.

85
L

<
10

−1
6

0.
85

L
<

10
−1

6
0.

90
L

<
10

−1
6

0.
87

L

L
:L

ar
ge

,M
:M

ed
iu

m
,S

:S
m

al
l,

N
:N

eg
lig

ib
le

81 Page 28 of 42 Empir Software Eng (2022) 27: 81

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

5.2 Results of RQ2 (Cross-Project Validation)

In this RQ, we compare APPTRACKER with the examined baseline approaches under cross-
project validation, using our evaluation metrics, the standard and weighted average scores
of F1-score, AUC and MCC, to measure the performance of our approach. Table 11 presents
the effectiveness of cross-project modeling compared to the baseline techniques while
Table 12 reports the statistical tests results. In addition, we show the different distributions
of the studied scores in Fig. 12.

First, the average values of standard and weighted F1-scores obtained by our APP-
TRACKER are acceptable by achieving median scores of 47% and 56% respectively and
can reach 90% (cf. Fig. 11). Regarding the binary classifications, Fig. 11 shows that the
scores obtained for the “good” class are generally better which is in line with the statistical
tests results. Thus, we believe that further research is needed to improve the prediction of
“neutral” and “bad” updates classes (Fig. 12).

Compared to the baseline approaches, we clearly see that, similar to RQ1, APPTRACKER

remains the best approach. For instance, APPTRACKER achieves 9% of improvement in
terms of MCC over SVC, the best ML technique, and 17% compared to mono-GP. More-
over, the statistical analysis confirms that all results are significantly different with small to
large effect sizes as reported in Table 12.

Compared to the within-project validation (RQ1), the results of our approach have
decreased, with 9% in terms of MCC and 3-5% in terms of AUC and F1 scores but with
negligible (for F1-standard) to small effect sizes. But overall, we believe that APPTRACKER

still is a promising solution that allows mitigating the lack of data, especially for new mobile
apps having no enough release history, and outperforms the state-of-the-art approaches.

Bad Good Neutral Standard Weighted

0.00

0.25

0.50

0.75

1.00

metric AUC F1 Precision Recall

Fig. 11 Results of APPTRACKER for cross-project validation

Page 29 of 42 81Empir Software Eng (2022) 27: 81

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Fig. 12 Boxplots comparing scores of APPTRACKER against baseline approaches for cross-project validation

5.3 Results of RQ3 (Feature Importance Analysis)

While in the previous RQs, we investigated the predictive performance of APPTRACKER, in
this stage we are interested in understanding how important is each feature for the generated
rules, as this would be helpful to prioritize the refactoring efforts during the maintenance
process. To this end, we apply the Permutation Feature Importance (PFI) technique then,
we cluster the results using the Scott-Knott test. In the following, we report the results of
feature importance analysis within-project and under cross-project validations. For the sake
of readability, we report only the top-5 metrics (in terms of their importance scores). For
more details, please refer to our replication package (Dataset for bad releases detection
2021).

81 Page 30 of 42 Empir Software Eng (2022) 27: 81

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

5.3.1 Within-Project Results

Table 13 shows the top-5 metrics ranked and grouped by their importance scores, as
determined by the Scott-Knott test.

Link to the last update The results show that the median percentage of negative rating of
the previous update (last perc neg rating) is the most important feature for our approach,
with an average score of 9%. A closer examination reveals that this feature achieves the
highest scores in 6 out of 19 apps. For example, in com.lionmobi.powerclean 85%
of bad updates have last perc neg rating ≥ 3.9%. In this app, removing this feature
would result in a decrease of 13% in the prediction accuracy of APPTRACKER. A similar
observation can be applied to com.google.android.youtube app in which we also
observed that eliminating last perc neg rating would a decrease of 20% in the prediction
accuracy. This can be explained by the fact that the app may have some unstable moments
in which users continue expressing their complaints related to an issue from the previous
update. Hence, our findings comply with prior work showing that developers may need to
perform changes through multiple updates until they recover from a bad update (Hassan
et al. 2018).

Release Size The installation size of an app (APK size) is the second most important
feature across the studied apps with an average score of 7.3% and being the most
important feature for one app, namely air.com.playtika.slotomania in which
the feature obtained 17% of importance score. Furthermore, the percentage of change
in the installation size (chang perc APK size) is the top-3 feature but with no statisti-
cal difference compared to APK size according to Scott-Knott tests results. Additionally,
chang perc APK size is the top-1 for two out of 19 apps, which indicates that the change
in the size of an app at the time of the release could affect the current rating. For
instance, we found in com.emoji.coolkeyboard app, that 56% of bad updates have
last perc neg rating ≥ 2%; which indicates that larger volume of code implies higher
probability to contain a bug (Tian et al. 2015) and thus may lead to the user’s dissatisfaction.

Release time release time and delay last release (G3) have also helped in discrimi-
nating the updates. While release time has on average an importance score of 6%,
delay last release obtained 5% and appears on top of the most important features for one
app namely com.emoji.ikeyboard. In this app, eliminating delay last release feature
in this app can lead to a decrease of 10% in the prediction accuracy of APPTRACKER.
Additionally, a manual investigation has revealed that all the bad updates in this app have

Table 13 The ranking of the
top-5 features within-project
scenario, divided into distinct
groups that have a statistically
significant difference in the mean

Groups Feature Average Importance Score (in %)

G1 last perc neg rating 9.22

G2 chang perc Apk size 7.32

Apk size 7.05

G3 release time 6.33

delay last release 5.16

Page 31 of 42 81Empir Software Eng (2022) 27: 81

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

delay last release ≤ 31 days which suggests that faster release time can introduce more
bugs and thus lead to negative ratings. We also advocate that developers may need to employ
proper testing tools to assure the quality of their quickly deployed releases.

5.3.2 Cross-Project Results

The PFI analysis results under cross-project scenario are displayed in Table 14.

The APK size This dimension appears again in the top-3 list of most important features
with two factors (APK size and chang perc APK size) and the scores of these features are
comparable as revealed by Scott-Knott ESD test (i.e. clustered in the same group G1). While
APK size appears on the top-1 list of 278 apps, chang perc APK size is the top-1 feature in
183 out of 1,313 apps. Hence, developers can consider optimizing their code complexity as
a mean to fix/avoid update issues.

Library The number of integrated libraries (Nlib) is the top-3 most important feature with
an average score of 6.1% and being the top-1 in 99 apps. By examining our generated
rules of bad updates, we have found that Nlib is usually associated with ≥. This result
is in line with Ahasanuzzaman et al. (2020) and Gui et al. (2017) studies’ results as the
authors showed that the frequency and size of displayed Ad increases the number of negative
reviews.

SDK The SDK dimension seems to be helpful to differentiate the updates under cross-
project scenario. In fact, the minimum SDK (min SDK) is the top-4 most important feature
with an average score of 5.7% and being the top-1 for 47 apps. This finding is in line with
previous study by Tian et al. (2015) in which authors found that, high-rated apps have a
higher minimum and target SDK as users are benefiting from the latest features provided
by SDK.

Link to previous updates The results in the table clearly indicate that The median aggre-
gated rating of all previous updates (hist rating) is among the most important features for
the all studied apps with an average score of 5.1%. We also found this feature to be dom-
inant in 83 out of 1,313 apps, which strengthens our previous findings claiming that if the
previous update’s rating highly affects the label of the current update. Being in line with
our motivating example in Section 2, this finding indicates that it is indeed hard to keep the
users’ confidence if a bad release occurs. That is, getting back the users’ satisfaction may
need time.

Table 14 The ranking of the
top-5 features for cross-project
scenario, divided into distinct
groups that have a statistically
significant difference in the mean

Groups Feature Average Importance Score (in %)

G1 Apk size 7.61

chang perc Apk size 7.09

G2 Nlib 6.11

G3 min sdk 5.72

G4 hist rating 5.16

81 Page 32 of 42 Empir Software Eng (2022) 27: 81

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

6 Discussion and Implications

In this section, we discuss the implications of our results in practice.

Supporting Mobile Apps Developers Track Bad Updates The usefulness of our APP-
TRACKER approach has been shown through its achieved performance in both within and
cross-project validations. Nevertheless, we believe that the key innovation of our approach
is its ability to provide the user with a comprehensible justification for the classification
especially when the changes made in the release are non-trivial. Moreover, it is worth noting
that, thanks to the flexibility of MOGP techniques, it can be possible to reduce the com-
plexity of the generated detection rules (e.g., tree size and/or depth) in order to generate
more comprehensible justification by considering this objective in the fitness function (or
as a constraint in the solution encoding), but at the cost of scarifying the accuracy as these
objectives are in conflict (Saidani et al. 2020).

Android Developers Need to Pay Attention to theQuality of their AppNext Release Our
results indicate that the history of the previous negative rating (i.e., the hist perc neg rating
and lastt perc neg rating features) is among the top important features. Hence, if an app
loses reputation through repeated bad releases, it will be hard to get back its reputation in
the future. Often, time constraints push mobile apps developers to release faster, however,
they should consider a trade-off between time and quality. That is, given that the mobile
apps market is evolving quickly with many competitors, developers should pay special care
to their updates and should maintain their reputation over time.

The Smaller the Release, the Smaller the Risk of Releasing Our results, for the most
important features, indicate that the change in the release size (APK size) is among the most
influencing features. While users typically tend to see new features, improvements, and bug
fixes, released regularly, as a sign of evolution, there is a dilemma with this. Moving fea-
tures around and changing behavior can be confusing and harm app’s user experience, so
it’s important to manage how new changes are released. Little and often is a good way to
go as small releases are less risky. For instance, suppose a developer releases ten features
at once, the risk of having a bug is high. In worst scenario, each of the ten released feature,
can have a bug. If this happens, the developer would be in a bad situation, trying to fix ten
serious bugs and get an update out as soon as possible. To minimize your risk, releasing
smaller and more frequent is likely a successful strategy.

Learn Best Practices for the Next Release in Mobile Apps Development Teaching the
next generation of engineers best practices for the release management process and its
impact on the users is of crucial importance. Educators can use our study results and our

Page 33 of 42 81Empir Software Eng (2022) 27: 81

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

dataset (Dataset for bad releases detection 2021) to teach and motivate students to follow
best release practices while avoiding bad updates that may cause user dissatisfaction or
regression in their apps. In particular, our real world dataset of 50,700 updates from 1,717
Android apps, represents a valuable resource that could enable the introduction of mobile
apps release to students using a “learn by example” methodology, illustrating best releasing
practices that should be followed and bad practices that should be avoided.

Other Formulations for the Problem Within the evolutionary process, our technique
evolves detection rules, mimicking the creation of decision trees, to solve the three-class
classification problem. While in this paper we showed that this tree-based approach can
achieve satisfactory results, there is a room of improvement. For instance, it is interesting
to explore solving the three-class classification problem without decomposing it to multiple
binary classifications.

7 Threats to Validity

In this section, we review the main threats to the validity of our findings:

Threats to Internal Validity Are concerned with the factors that could have affected the
validity of our results. The main concern could be related to the stochastic nature of search-
based algorithms, and some ML techniques (e.g. DT). To address this issue, we repeated
each experimentation 31 times and considered the median scores values used to evaluate
the predictive performance. Threats to internal validity could also be related to possible
errors in our experiments. To conduct our experiments, we used real-world dataset collected
from Google Play Store, the largest market place for mobile applications and mined user
reviews on real time in a period of over three years using a dedicated tool. Another possi-
ble threat to internal validity could be related to bias in the replication of the benchmark
approaches. We employed widely used tools and implementation of the search algorithms,
MOEA Framework (Hadka), and the Scikit-learn (learn 2006a) and XGB (XGBoost 2006)
Python libraries for the machine learning algorithms. respectively. Thus, we believe that
there is a negligible bias towards internal threats to validity.

Threats to Construct Validity are mainly related to the rigor of the study design. First, we
relied on three standard performance metrics namely F1-score widely employed in predic-
tive models comparison (Hastie et al. 2009). Second, although we used different families
learning algorithms, there exist other techniques. As a future work, we plan to extend our
empirical study with other baseline techniques. Another threat to construct validity could be
related to parameters’ tuning as setting different parameters can lead to different results for
search-based as well as ML techniques. We mitigated this issue by applying several trial and
error iterations to tune search-based algorithms and relied on Grid Search (Scikit-learn.org
2006) method to find the optimal settings of ML techniques. Thus, future replication of this
work should explore other ranges/parameters and their impacts on the predictive perfor-
mance. An additional threat to internal validity is related to training and test sets selection.
As an attempt to mitigate this issue, we considered in RQ1 the time series validation which
is a realistic scenario as it considers the chronological order of apps’ releases. In RQ2, we
selected a typical scenario in which we train APPTRACKER on data from the same category
(i.e. similar characteristics). Future work is planned to validate our approach considering a
time-aware selection in the cross-project setting.

81 Page 34 of 42 Empir Software Eng (2022) 27: 81

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Conclusion Threats to Validity Conclusion threats to validity concern the relationship
between the treatment and the outcome. To provide support for the conclusions derived
from the obtained results, we use Wilcoxon signed rank test (Wilcoxon et al. 1970) with a
95% confidence level while using Bonferroni correction (Armstrong 2014). Vargha-Delaney
A (VDA) (Vargha and Delaney 2000) is also used to measure the effect size. This non-
parametric method is widely recommended in SBSE context (Nejati and Gay 2019). The
employed statistical analysis provides strong evidence for validating our assumptions and
our experimental study. Hence, we believe that there is negligible threat to the validity of
our conclusions.

Threats to External Validity are concerned with the generalizability of results since the
experiments were based on free-to-download android apps. Hence, future replications of
this study are necessary to confirm our findings in other contexts such as paid Android
applications and iOS mobile applications.

8 RelatedWork

In this section, we review the related works that can be divided into 2 classes (1) analysis of
user feedback, and (2) release engineering in mobile apps.

8.1 Studies on User Review Analysis in Mobile Apps

Several research works have analyzed user reviews in mobile apps to extract knowledge
about different mobile app development aspects. Pagano and Maalej (2013) investigated
user reviews and found that users tend to provide their review feedback shortly after a
new app release, while negative feedback (e.g., shortcomings) is generally destructive.
Later, Maalej and Nabil (2015) used various techniques to collect different features from
user reviews, then used different ML algorithms to label reviews into four categories:
(i) feature request, (ii) bug report, (iii) user experience, and (iv) unspecified. Similarly,
?panichella2015can,panichella2016ardoc () proposed an approach named as
App Reviews Development Oriented Classifier (ARdoc) which classifies user reviews into
five categories: (i) feature request, (ii) bug report, (iii) providing information, (iv) request-
ing information and (v) others. El Zarif et al. (Zarif et al. 2020) studied users’ feedback
and found that users express their intentions to switch to competitors when facing issues in
the used software systems. Hence, Assi et al. (2021) proposed FeatCompare that extracts
features from user reviews of competitor apps. The obtained results show that FeatCom-
pare outperforms the existing state-of-the-art approaches with 14.7% on average. They also
found that 70% of the surveyed app developers agree on the potential benefits of using Feat-
Compare to extract features of competitor apps. Hu et al. (2019) studied the consistency of
star ratings and reviews of popular free hybrid Android and iOS apps. They found that some
hybrid apps do not obtain coherent user ratings across platforms. Sarro et al. (2018) showed
the possibility of predicting user ratings for an app based on the features it offers in Android
and BlackBerry with high accuracy.

To investigate the user rating influence, Harman et al. (2012) studied over 32k Black-
Berry applications and found a high correlation between the average user rating and the
number of downloads of an app. Later, Martin et al. (Martin et al. 2016; Martin et al. 2016)
found that paid and free app releases tend to have a positive impact on the success of an app
and that free apps with significant releases are more likely to have positive effects on the

Page 35 of 42 81Empir Software Eng (2022) 27: 81

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

user ratings. Moreover, they found that app releases related to bug fixes and new features are
more likely to increase user ratings. Moreover, Noei et al. (2017) found that some specific
mobile device characteristics (such as CPU) have a high relation with the user-perceived
quality. Recently, Hassan et al. (2017) investigated emergency updates in Android apps
and revealed that these emergency updates are unlikely to be followed by other emergency
updates so that they tend to have a long longevity. The study also revealed that emergency
updates are often preceded by updates having more negative user reviews than the emer-
gency ones themselves. Moreover, Khalid et al. (Khalid et al. 2014) investigated iOS mobile
apps user complaints from 20 iOS app reviews and identified 12 types of complaints. Most
of these complaints were related to functional errors, as well as privacy and ethics-related
issues. Chen et al. (2021) studied User Interface (UI) issues mentioned in the reviews of
31,579 apps in the Google Play Store and found that UI-related reviews have lower ratings
than the other reviews. Moreover, Chen et al. identified seventeen issue types (e.g., layout
and navigation) related to the UI of mobile apps. Gui et al. (2017) studied various aspects of
advertisement (ads) libraries and found that most Ad complaints leading to negative reviews
were related to user interface concerns such as the frequency, timing and location of the
displayed ads.

Several studies exploited user reviews and complaints to help in various maintenance and
evolution activities. For instance, Ciurumelea et al. (2017) studied the textual description of
user reviews then leveraged machine learning and information retrieval techniques to plan
for the next release. Their approach aim at categorizing reviews and recommending the rel-
evant source code files that should to be modified to address the issue described in the user
review. Palomba et al. (Palomba et al. 2017) introduced an approach namely CHANGEAD-
VISOR that automatically analyzes user reviews from which it recommends source code
artifacts to be changed using natural language processing and clustering algorithms.

8.2 Studies on Releases Engineering in Mobile Apps

Several research works focused on studying release practices in mobiles apps. Nayebi et al.
(2016) performed a survey to study release strategies adopted for mobile apps and their
impact on users. Their study shows that experienced developers are mostly aware that their
release strategy affects user review and expressed interest in accommodating users’ feed-
back in their release strategy. From user perspective, the study revealed that while users
value apps with frequent updates, they also point out that frequent updates could negatively
affect users’ opinion about an app. Later, Domı́nguez-Álvarez and Gorla (2019) studied
mobile apps releasing practices in both iOS and Android and found that developers make
new releases of their apps more frequently in Android than on iOS. They also found that
there is no synchronization in releasing apps on both platforms.

Calciati et al. (Calciati et al. 2018; Calciati and Gorla 2017) studied the evolution of
Android apps to investigate how apps behavior changes across different releases of the same
app. Most of the observed changes are related to an increased leak of sensitive data, an
increase of added of permission, and an increase of API calls related to dangerous permis-
sions in posterior releases over time. Nayebi et al. (2017) built different analogical reasoning
models to predict Android apps release marketability based on changes in release and code
attributes. The obtained results indicate that Android app releases follow certain patterns
over time that allow predicting the success of future releases success.

Xia et al. (2016) are the first to propose a machine learning technique to predict crashing
mobile releases. Using a number of change factors such as complexity, time, and diffusion,
they trained a Naive Bayes classifier to predict crashing releases for 10 open source apps.

81 Page 36 of 42 Empir Software Eng (2022) 27: 81

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Their results revealed that the technique can improve the prediction of random guessing
by 50% and 28% in terms of F1 and AUC, respectively. Later, Su et al. (2020) studied
crashing releases in open source and commercial Android apps based on thrown exceptions
and found that Android framework-related exceptions (e.g., app Management, Database and
Widget) and library exceptions are the main root causes. Recently, Yang et al. (Yang et al.
2021) analyzed the release notes of 69,851 releases for 2,232 apps in the Google Play Store
and identified six patterns of release notes (e.g., apps with short and rarely updated release
notes). The obtained results show that apps with long release notes have higher ratings
than other apps. They also found that apps with shifting in their release notes patterns have
encountered an increase in the average rating of these apps. Recently, Hamdi et al. (Hamdi
et al. 2021; Hamdi et al. 2021) conducted a longitudinal study on refactoring activities in
Android apps. They found that while developers often refactor their apps source code, bad
coding and design practices are unlikely to be removed though refactoring.

While there are several studies on user reviews and release practices and issues in mobile
apps, there are no specific approaches to predict bad releases. In our approach, our goal is
to track all bad releases, including crashing ones by leveraging the user feedback as reviews
typically include the experienced crashes/issues by end users.

9 Conclusion and FutureWork

This paper proposed a novel search-based approach for bad mobile apps tracking, APP-
TRACKER, in which we adapted NSGA-II to generate optimal detection rules for each class
(i.e. bad, good and neutral). The rules have tree-like representations in order to find the best
trade-off between two conflicting objective functions to (1) maximize the true positive rate,
and (2) minimize the false positive rate of the binary classification. An empirical study is
conducted on a benchmark of 50,700 updates of 1,717 free Android apps having over 50,700
release updates. Considering two validation scenarios namely cross-validation and cross-
project validation, the statistical analysis of the obtained results reveals that APPTRACKER

is advantageous over mono-objective Genetic Programming (mono-GP) and seven Machine
Learning (ML) techniques, which confirms that our formulation is better to solve the prob-
lem. Regarding the bad updates analysis, we found that (1) the previous updates ratings
and (2) the APK size are the most important features for both within and cross-project
scenarios.

Our future research agenda includes performing a larger empirical study with apps from
other stores with free and paid applications. We also plan to consider other metrics, e.g.,
code-level quality. Furthermore, we plan to extend our APPTRACKER approach in the form
of a bot to integrated into the development pipeline of Android apps to notify developers
of their updates’ risk before releasing a new version to end-users. Furthermore, while the
prediction of the corresponding class (good, bad, or neutral) is helpful for Android develop-
ers to follow better release practices and improve users experience, predicting the specific
negativity ratio would provide a more fine-grained analysis. Hence, as future work it is inter-
esting to build regressor-based models to estimate the negativity ratio. Moreover, we plan
to implement a bot based on APPTRACKER and conduct a user study with our industrial
partner to better evaluate our approach in an industrial setting.

Acknowledgements This research has been funded by the Natural Sciences and Engineering Research
Council of Canada (NSERC) RGPIN-2018-05960.

Page 37 of 42 81Empir Software Eng (2022) 27: 81

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

References

Ahasanuzzaman M, Hassan S, Bezemer C-P, Hassan AE (2020) A longitudinal study of popular ad libraries
in the google play store. Empir Softw Eng 25(1):824–858

Ahasanuzzaman M, Hassan S, Hassan AE (2020) Studying ad library integration strategies of top free-to-
download apps. IEEE Trans Softw Eng

Akdeniz (2013) Google play crawler. available online:. https://github.com/Akdeniz/google-play-crawler,
Accessed: 2021-03-1

Almarimi N, Ouni A, Chouchen M, Saidani I, Mkaouer MW (2020) On the detection of community smells
using genetic programming-based ensemble classifier chain. In: 15th ACM international conference on
global software engineering, pp 43–54

AppAnnie (2020) App annie. available online:. https://www.appannie.com/en/, Accessed: 2020-04-01
Arcuri A, Briand L (2011) A practical guide for using statistical tests to assess randomized algorithms in

software engineering. In: 33rd international conference on software engineering (ICSE), pp 1–10
Arcuri A, Fraser G (2011) On parameter tuning in search based software engineering. In: International

symposium on search based software engineering. Springer, pp 33–47
Armstrong RA (2014) When to use the b onferroni correction. Ophthalmic Physiol Opt 34(5):502–508
Assi M, Hassan S, Tian Y, Zou Y (2021) Featcompare: Feature comparison for competing mobile apps

leveraging user reviews. Empir Softw Eng 26(5):94
Bhowan U, Zhang M, Johnston M (2010) Genetic programming for classification with unbalanced data. In:

European conference on genetic programming, pp 1–13
Branco P, Torgo L, Ribeiro RP (2017) Relevance-based evaluation metrics for multi-class imbalanced

domains. In: Pacific-Asia Conference on Knowledge Discovery and Data Mining. Springer, pp 698–710
Breiman L (2001) Random forests. Machine Learn 45(1):5–32
Calciati P, Gorla A (2017) How do apps evolve in their permission requests? a preliminary study. In:

IEEE/ACM 14th international conference on mining software repositories (MSR), pp 37–41
Calciati P, Kuznetsov K, Bai X, Gorla A (2018) What did really change with the new release of the app? In:

15th international conference on mining software repositories (MSR), pp 142–152
Catolino G, Di Nucci D, Ferrucci F (2019) Cross-project just-in-time bug prediction for mobile apps: an

empirical assessment. In: International conference on mobile software engineering and systems, pp 99–
110

Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) Smote: synthetic minority over-sampling
technique. J Artif Intell Res 16:321–357

Chen Q, Chen C, Hassan S, Xing Z, Xia X, Hassan AE (2021) How should I improve the UI of my app?: A
study of user reviews of popular apps in the google play. ACM Trans Softw Eng Methodol (TOSEM)
30(3):37:1–37:38

Chen T, He T, Benesty M, Khotilovich V, Tang Y (2015) Xgboost: extreme gradient boosting. R package
version 0.4-2, 1–4

Chen Z, Lu S (2007) A genetic programming approach for classification of textures based on wavelet
analysis. In: 2007 IEEE international symposium on intelligent signal processing. IEEE, pp 1–6

Chicco D, Jurman G (2020) The advantages of the matthews correlation coefficient (mcc) over f1 score and
accuracy in binary classification evaluation. BMC genomics 21(1):1–13

Ciurumelea A, Schaufelbühl A, Panichella S, Gall HC (2017) Analyzing reviews and code of mobile apps
for better release planning. In: 24th IEEE international conference on software analysis, evolution and
reengineering (SANER), pp 91–102

Darwish SM, EL-Zoghabi AA, Ebaid DB (2015) A novel system for document classification using genetic
programming. J Adv Inform Technol, 6(4)

Dataset for bad releases detection (2021) Available at : https://github.com/stilab-ets/AppTracker
Deb K, Pratap A, Agarwal S, Meyarivan TAMT (2002). In: A fast and elitist multiobjective genetic algorithm:

NSGA-II, vol 6, pp 182–197
Domı́nguez-Álvarez D, Gorla A (2019) Release practices for ios and android apps. In: ACM SIGSOFT

International Workshop on App Market Analytics, pp 15–18
Eberius J, Braunschweig K, Hentsch M, Thiele M, Ahmadov A, Lehner W (2015) Building the dresden web

table corpus: A classification approach. In: 2015 IEEE/ACM 2nd International Symposium on Big Data
Computing (BDC). IEEE, pp 41–50

Espejo PG, Ventura S, Herrera F (2009) A survey on the application of genetic programming to classification.
IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 40(2):121–
144

81 Page 38 of 42 Empir Software Eng (2022) 27: 81

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Evans BP, Xue B, Zhang M (2019) What’s inside the black-box? a genetic programming method for inter-
preting complex machine learning models. In: Proceedings of the genetic and evolutionary computation
conference, pp 1012–1020

Fisher A, Rudin C, Dominici F (2019) All models are wrong, but many are useful: Learning a vari-
able’s importance by studying an entire class of prediction models simultaneously. J Mach Learn Res
20(177):1–81

Gui J, Nagappan M, Halfond WGJ (2017) What aspects of mobile ads do users care about? an empirical
study of mobile in-app ad reviews. arXiv:1702.07681

Hadka D Moea framework. http://moeaframework.org/, Accessed: 2020-12-01
Hamdi O, Ouni A, AlOmar EA, Cinnéide MO, Mkaouer MW (2021) An empirical study on the impact of

refactoring on quality metrics in android applications. In: IEEE/ACM 8th international conference on
mobile software engineering and systems (MobileSoft), pp 28–39

Hamdi O, Ouni A, Cinnéide MO, Mkaouer MW (2021) A longitudinal study of the impact of refactoring in
android applications. Inf Softw Technol 140:106699

Harman M, Jia Y, Zhang Y (2012) App store mining and analysis: Msr for app stores. In: IEEE working
conference on mining software repositories (MSR), pp 108–111

Harman M, Jones BF (2001) Search-based software engineering. Inform Softw Technol 43(14):833–839
Harman M, Mansouri SA, Zhang Y (2012) Search-based software engineering: Trends, techniques and

applications. ACM Computing Surveys (CSUR) 45(1):11
Harman M, McMinn P, De Souza JT, Yoo S (2010) Search based software engineering: Techniques,

taxonomy, tutorial. In: Empirical software engineering and verification. Springer, pp 1–59
Hassan MM, Ullah S, Hossain MS, Alelaiwi A (2020) An end-to-end deep learning model for human activity

recognition from highly sparse body sensor data in internet of medical things environment. The Journal
of Supercomputing, 1–14

Hassan S, Bezemer C-P, Hassan AE (2018) Studying bad updates of top free-to-download apps in the google
play store. IEEE Trans Softw Eng

Hassan S, Shang W, Hassan AE (2017) An empirical study of emergency updates for top android mobile
apps. Empir Softw Eng 22(1):505–546

Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining, inference, and
prediction. Springer Science & Business Media, Berlin

Hossin M, Sulaiman MN (2015) A review on evaluation metrics for data classification evaluations. Int J Data
Mining Know Manag Process 5(2):1

Hu H, Wang S, Bezemer C-P, Hassan AE (2019) Studying the consistency of star ratings and reviews of
popular free hybrid android and ios apps. Empir Softw Eng 24(1):7–32

Huang Q, Xia X, Lo D (2017) Supervised vs unsupervised models: A holistic look at effort-aware just-in-
time defect prediction. In: 2017 IEEE international conference on software maintenance and evolution
(ICSME). IEEE, pp 159–170

Kabinna S, Bezemer C-P, Shang W, Syer MD, Hassan AE (2018) Examining the stability of logging
statements. Empir Softw Eng 23(1):290–333

Kessentini M, Ouni A (2017) Detecting android smells using multi-objective genetic programming. In:
Proceedings of the 4th international conference on mobile software engineering and systems, pp 122–132

Kessentini W, Kessentini M, Sahraoui H, Bechikh S, Ouni A (2014) A cooperative parallel search-based
software engineering approach for code-smells detection. IEEE Trans Softw Eng 40(9):841–861

Khalid H, Shihab E, Nagappan M, Hassan AE (2014) What do mobile app users complain about? IEEE
Softw 32(3):70–77

Kishore JK, Patnaik LM, Mani V, Agrawal VK (2000) Application of genetic programming for multicategory
pattern classification. IEEE Trans Evolution Comput 4(3):242–258

Klepper S, Krusche S, Peters S, Bruegge B, Alperowitz L (2015) Introducing continuous delivery of mobile
apps in a corporate environment: A case study. In: 2015 IEEE/ACM 2nd international workshop on rapid
continuous software engineering. IEEE, pp 5–11

learn S (2006) Scikit-learn classification and regression models. https://scikit-learn.org/stable/supervised
learning, Accessed: 2021-01-10

learn S (2006) Scikit-learn multiclass-classification. https://scikit-learn.org/stable/modules/multiclass.html#
multiclass-classification, Accessed: 2021-01-10

Li H, Shang W, Zou Y, Hassan AE (2017) Towards just-in-time suggestions for log changes. Empir Softw
Eng 22(4):1831–1865

Loveard T, Ciesielski V (2001) Representing classification problems in genetic programming. In: Pro-
ceedings of the 2001 congress on evolutionary computation (IEEE Cat. No. 01TH8546), vol 2. IEEE,
pp 1070–1077

Page 39 of 42 81Empir Software Eng (2022) 27: 81

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Maalej W, Nabil H (2015) Bug report, feature request, or simply praise? on automatically classifying app
reviews. In: 2015 IEEE 23rd international requirements engineering conference (RE). IEEE, pp 116–125

Martens D, Maalej W (2019) Release early, release often, and watch your users’ emotions: Lessons from
emotional patterns. IEEE Softw 36(5):32–37

Martin W, Sarro F, Harman M (2016) Causal impact analysis for app releases in google play. In: Proceedings
of the 2016 24th ACM SIGSOFT international symposium on foundations of software engineering,
pp 435–446

Martin W, Sarro F, Jia Y, Zhang Y, Harman M (2016) A survey of app store analysis for software
engineering. IEEE Trans Softw Eng 43(9):817–847

Mkaouer W, Kessentini M, Shaout A, Koligheu P, Bechikh S, Deb K, Ouni A (2015) Many-objective
software remodularization using nsga-iii. ACM Trans Softw Eng Methodol (TOSEM) 24(3):17

Nayebi M, Adams B, Ruhe G (2016) Release practices for mobile apps – what do users and developers think?
In: IEEE 23rd international conference on software analysis, evolution, and reengineering (SANER),
vol 1, pp 552–562

Nayebi M, Farahi H, Ruhe G (2017) Which version should be released to app store? In: ACM/IEEE
international symposium on empirical software engineering and measurement (ESEM), pp 324–333

Nejati S, Gay G (2019) 11th international symposium search-based software engineering. vol 11664
Noei E, Syer MD, Zou Y, Hassan AE, Keivanloo I (2017) A study of the relation of mobile device attributes

with the user-perceived quality of android apps. Empir Softw Eng 22(6):3088–3116
Openja M, Adams B, Khomh F (2020) Analysis of modern release engineering topics:–a large-scale

study using stackoverflow–. In: IEEE international conference on software maintenance and evolution
(ICSME), pp 104–114

Ouni A (2020) Search based software engineering: challenges, opportunities and recent applications. In:
Genetic and evolutionary computation conference (GECCO), pp 1114–1146

Ouni A, Kessentini M, Inoue K, Cinnéide MO (2015) Search-based web service antipatterns detection. IEEE
Trans Serv Comput 10(4):603–617

Ouni A, Kessentini M, Sahraoui H, Boukadoum M (2013) Maintainability defects detection and correction:
a multi-objective approach. Autom Softw Eng 20(1):47–79

Ouni A, Kessentini M, Sahraoui H, Hamdi MS (2012) Search-based refactoring: Towards semantics
preservation. In: IEEE international conference on software maintenance (ICSM), pp 347–356

Ouni A, Kessentini M, Sahraoui H, Inoue K, Deb K (2016) Multi-criteria code refactoring using search-based
software engineering: An industrial case study. ACM Trans Softw Eng Methodol (TOSEM) 25(3):23

Pagano D, Maalej W (2013) User feedback in the appstore: An empirical study. In: 21st IEEE international
requirements engineering conference (RE), pp 125–134

Palomba F, Linares-Vasquez M, Bavota G, Oliveto R, Di Penta M, Poshyvanyk D, De Lucia A (2015)
User reviews matter! tracking crowdsourced reviews to support evolution of successful apps. In: IEEE
international conference on software maintenance and evolution (ICSME), pp 291–300

Palomba F, Salza P, Ciurumelea A, Panichella S, Gall H, Ferrucci F, De Lucia A (2017) Recommending
and localizing change requests for mobile apps based on user reviews. In: IEEE/ACM 39th International
Conference on Software Engineering (ICSE), pp 106–117

Panichella S, Di Sorbo A, Guzman E, Visaggio CA, Canfora G, Gall HC (2015) How can i improve my app?
classifying user reviews for software maintenance and evolution. In: 2015 IEEE international conference
on software maintenance and evolution (ICSME). IEEE, pp 281–290

Panichella S, Di Sorbo A, Guzman E, Visaggio CA, Canfora G, Gall HC (2016) Ardoc: App reviews devel-
opment oriented classifier. In: Proceedings of the 2016 24th ACM SIGSOFT international symposium
on foundations of software engineering, pp 1023–1027

Qiu F, Yan M, Xia X, Wang X, Fan Y, Hassan AE, Lo D (2020) Jito: a tool for just-in-time defect identifica-
tion and localization. In: Proceedings of the 28th ACM joint meeting on european software engineering
conference and symposium on the foundations of software engineering, pp 1586–1590

Rocha A, Goldenstein SK (2013) Multiclass from binary: Expanding one-versus-all, one-versus-one and
ecoc-based approaches. IEEE Trans Neural Netw Learn Syst 25(2):289–302

Royston P (1992) Approximating the shapiro-wilk w-test for non-normality. Stat Comput 2(3):117–119
Saidani I, Ouni A, Chouchen M, Mkaouer MW (2020) Predicting continuous integration build failures using

evolutionary search. Inf Softw Technol 128:106392
Saidani I, Ouni A, Mkaouer W (2021) Detecting skipped commits in continuous integration using multi-

objective evolutionary search. IEEE Trans Softw Eng
Sarro F, Harman M, Jia Y, Zhang Y (2018) Customer rating reactions can be predicted purely using app

features. In: IEEE 26th international requirements engineering conference (RE), pp 76–87

81 Page 40 of 42 Empir Software Eng (2022) 27: 81

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Scalabrino S, Grano G, Di Nucci D, Oliveto R, De Lucia A (2016) Search-based testing of procedural pro-
grams: Iterative single-target or multi-target approach? In: International symposium on search based
software engineering, pp 64–79

Scikit-learn.org (2006) Parameter estimation using grid search with scikit-learn. available online:. https://
scikit-learn.org/stable/modules/grid search.html, Accessed: 2020-12-01

Smart W, Zhang M (2005) Using genetic programming for multiclass classification by simultaneously
solving component binary classification problems. In: European conference on genetic programming.
Springer, pp 227–239

Sokolova M, Lapalme G (2009) A systematic analysis of performance measures for classification tasks.
Inform Process Manag 45(4):427–437

Su T, Fan L, Chen S, Liu Y, Xu L, Pu G, Su Z (2020) Why my app crashes understanding and benchmarking
framework-specific exceptions of android apps. IEEE Trans Softw Eng

Tanha J, Abdi Y, Samadi N, Razzaghi N, Asadpour M (2020) Boosting methods for multi-class imbalanced
data classification: an experimental review. J Big Data 7(1):1–47

Tantithamthavorn C, McIntosh S, Hassan AE, Ihara A, Matsumoto K (2015) The impact of mislabelling
on the performance and interpretation of defect prediction models. In: 2015 IEEE/ACM 37th IEEE
international conference on software engineering, vol 1. IEEE, pp 812–823

Tantithamthavorn C, McIntosh S, Hassan AE, Matsumoto K (2017) An empirical comparison of model
validation techniques for defect prediction models. (1)

Tantithamthavorn C, McIntosh S, Hassan AE, Matsumoto K (2018) The impact of automated parameter
optimization for defect prediction models

Tantithamthavorn C, McIntosh S, Hassan AE, Matsumoto K (2018) The impact of automated parameter
optimization on defect prediction models. IEEE Trans Softw Eng 45(7):683–711

Thomas SW, Hemmati H, Hassan AE, Blostein D (2014) Static test case prioritization using topic models.
Empir Softw Eng 19(1):182–212

Tian Y, Nagappan M, Lo D, Hassan AE (2015) What are the characteristics of high-rated apps? a case study
on free android applications. In: IEEE international conference on software maintenance and evolution
(ICSME), pp 301–310

Vargha A, Delaney HD (2000) A critique and improvement of the cl common language effect size statistics
of mcgraw and wong. J Educ Behav Stat 25(2):101–132

Villarroel L, Bavota G, Russo B, Oliveto R, Di Penta M (2016) Release planning of mobile apps based on
user reviews. In: 2016 IEEE/ACM 38th international conference on software engineering (ICSE). IEEE,
pp 14–24

Wilcoxon F, Katti SK, Wilcox RA (1970) Critical values and probability levels for the wilcoxon rank sum
test and the wilcoxon signed rank test. Select Table Math Stat 1:171–259

XGBoost (2006) Xgboost python package. https://xgboost.readthedocs.io/en/latest/python/index.html,
Accessed: 2021-01-10

Xia J, Li Y, Wang C (2017) An empirical study on the cross-project predictability of continuous integration
outcomes. In: 14th Web information systems and applications conference (WISA), pp 234–239

Xia X, Shihab E, Kamei Y, Lo D, Wang X (2016) Predicting crashing releases of mobile applications. In:
Proceedings of the 10th ACM/IEEE international symposium on empirical software engineering and
measurement, pp 1–10

Yan M, Xia X, Fan Y, Hassan AE, Lo D, Li S (2020) Just-in-time defect identification and localization: A
two-phase framework. IEEE Trans Softw Eng

Yan M, Xia X, Fan Y, Lo D, Hassan AE, Zhang X (2020) Effort-aware just-in-time defect identification in
practice: a case study at alibaba. In: Proceedings of the 28th ACM joint meeting on european software
engineering conference and symposium on the foundations of software engineering, pp 1308–1319

Yang AZH, Hassan S, Zou Y, Hassan AE (2021) An empirical study on release notes patterns of popular
apps in the google play store. Empir Softw Eng, 1–41

Yang Y, Zhou Y, Liu J, Zhao Y, Lu H, Xu L, Xu B, Leung H (2016) Effort-aware just-in-time defect predic-
tion: simple unsupervised models could be better than supervised models. In: Proceedings of the 2016
24th ACM SIGSOFT international symposium on foundations of software engineering, pp 157–168

Zar JH (2005) Spearman rank correlation. Encyclopedia Biostat. vol. 7
Zarif OE, da Costa DA, Hassan S, Zou Y (2020) On the relationship between user churn and software issues.

In: 17th international conference on mining software repositories (MSR). ACM, pp 339–349

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Page 41 of 42 81Empir Software Eng (2022) 27: 81

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Affiliations

Islem Saidani1 ·Ali Ouni1 ·Md Ahasanuzzaman2 · Safwat Hassan3 ·
MohamedWiemMkaouer4 ·Ahmed E. Hassan2

Ali Ouni
ali.ouni@etsmtl.ca

Md Ahasanuzzaman
md.ahasanuzzaman@queensu.ca

Safwat Hassan
shassan@tru.ca

Mohamed Wiem Mkaouer
mwmvse@rit.edu

Ahmed E. Hassan
ahmed@cs.queensu.ca

1 ETS Montreal, University of Quebec, Montreal, QC, Canada
2 Queen’s University, Kingston, ON, Canada
3 Thompson Rivers University, Kamloops, BC, Canada
4 Rochester Institute of Technology, Rochester, NY, USA

81 Page 42 of 42 Empir Software Eng (2022) 27: 81

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1.

2.

3.

4.

5.

6.

Terms and Conditions

Springer Nature journal content, brought to you courtesy of Springer Nature Customer Service Center
GmbH (“Springer Nature”).
Springer Nature supports a reasonable amount of sharing of research papers by authors, subscribers
and authorised users (“Users”), for small-scale personal, non-commercial use provided that all
copyright, trade and service marks and other proprietary notices are maintained. By accessing,
sharing, receiving or otherwise using the Springer Nature journal content you agree to these terms of
use (“Terms”). For these purposes, Springer Nature considers academic use (by researchers and
students) to be non-commercial.
These Terms are supplementary and will apply in addition to any applicable website terms and
conditions, a relevant site licence or a personal subscription. These Terms will prevail over any
conflict or ambiguity with regards to the relevant terms, a site licence or a personal subscription (to
the extent of the conflict or ambiguity only). For Creative Commons-licensed articles, the terms of
the Creative Commons license used will apply.
We collect and use personal data to provide access to the Springer Nature journal content. We may
also use these personal data internally within ResearchGate and Springer Nature and as agreed share
it, in an anonymised way, for purposes of tracking, analysis and reporting. We will not otherwise
disclose your personal data outside the ResearchGate or the Springer Nature group of companies
unless we have your permission as detailed in the Privacy Policy.
While Users may use the Springer Nature journal content for small scale, personal non-commercial
use, it is important to note that Users may not:

use such content for the purpose of providing other users with access on a regular or large scale

basis or as a means to circumvent access control;

use such content where to do so would be considered a criminal or statutory offence in any

jurisdiction, or gives rise to civil liability, or is otherwise unlawful;

falsely or misleadingly imply or suggest endorsement, approval , sponsorship, or association

unless explicitly agreed to by Springer Nature in writing;

use bots or other automated methods to access the content or redirect messages

override any security feature or exclusionary protocol; or

share the content in order to create substitute for Springer Nature products or services or a

systematic database of Springer Nature journal content.

In line with the restriction against commercial use, Springer Nature does not permit the creation of a
product or service that creates revenue, royalties, rent or income from our content or its inclusion as
part of a paid for service or for other commercial gain. Springer Nature journal content cannot be
used for inter-library loans and librarians may not upload Springer Nature journal content on a large
scale into their, or any other, institutional repository.
These terms of use are reviewed regularly and may be amended at any time. Springer Nature is not
obligated to publish any information or content on this website and may remove it or features or
functionality at our sole discretion, at any time with or without notice. Springer Nature may revoke
this licence to you at any time and remove access to any copies of the Springer Nature journal content
which have been saved.
To the fullest extent permitted by law, Springer Nature makes no warranties, representations or
guarantees to Users, either express or implied with respect to the Springer nature journal content and
all parties disclaim and waive any implied warranties or warranties imposed by law, including
merchantability or fitness for any particular purpose.
Please note that these rights do not automatically extend to content, data or other material published
by Springer Nature that may be licensed from third parties.
If you would like to use or distribute our Springer Nature journal content to a wider audience or on a
regular basis or in any other manner not expressly permitted by these Terms, please contact Springer
Nature at

onlineservice@springernature.com

mailto:onlineservice@springernature.com

