
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/349469452

On the Impact of Aesthetic Defects on the Maintainability of Mobile Graphical

User Interfaces: An Empirical Study

Article in Information Systems Frontiers · April 2022

DOI: 10.1007/s10796-020-10100-w

CITATIONS

2
READS

68

5 authors, including:

Some of the authors of this publication are also working on these related projects:

Bug Management View project

Aesthetic redesign of UIs View project

Makram Soui

Saudi Electronic University

49 PUBLICATIONS 227 CITATIONS

SEE PROFILE

Mabrouka Chouchane

Ecole Nationale des Sciences de l'Informatique

7 PUBLICATIONS 40 CITATIONS

SEE PROFILE

Narjes Bessghaier

École de Technologie Supérieure

6 PUBLICATIONS 19 CITATIONS

SEE PROFILE

Mohamed Wiem Mkaouer

Rochester Institute of Technology

138 PUBLICATIONS 1,332 CITATIONS

SEE PROFILE

All content following this page was uploaded by Mohamed Wiem Mkaouer on 21 March 2022.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/349469452_On_the_Impact_of_Aesthetic_Defects_on_the_Maintainability_of_Mobile_Graphical_User_Interfaces_An_Empirical_Study?enrichId=rgreq-660ad8eefeb3b7d4559bb04322ce76f5-XXX&enrichSource=Y292ZXJQYWdlOzM0OTQ2OTQ1MjtBUzoxMTM2MTM3ODI1NDYwMjI1QDE2NDc4ODc3NzQxNjY%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/349469452_On_the_Impact_of_Aesthetic_Defects_on_the_Maintainability_of_Mobile_Graphical_User_Interfaces_An_Empirical_Study?enrichId=rgreq-660ad8eefeb3b7d4559bb04322ce76f5-XXX&enrichSource=Y292ZXJQYWdlOzM0OTQ2OTQ1MjtBUzoxMTM2MTM3ODI1NDYwMjI1QDE2NDc4ODc3NzQxNjY%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Bug-Management?enrichId=rgreq-660ad8eefeb3b7d4559bb04322ce76f5-XXX&enrichSource=Y292ZXJQYWdlOzM0OTQ2OTQ1MjtBUzoxMTM2MTM3ODI1NDYwMjI1QDE2NDc4ODc3NzQxNjY%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Aesthetic-redesign-of-UIs?enrichId=rgreq-660ad8eefeb3b7d4559bb04322ce76f5-XXX&enrichSource=Y292ZXJQYWdlOzM0OTQ2OTQ1MjtBUzoxMTM2MTM3ODI1NDYwMjI1QDE2NDc4ODc3NzQxNjY%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-660ad8eefeb3b7d4559bb04322ce76f5-XXX&enrichSource=Y292ZXJQYWdlOzM0OTQ2OTQ1MjtBUzoxMTM2MTM3ODI1NDYwMjI1QDE2NDc4ODc3NzQxNjY%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Makram-Soui?enrichId=rgreq-660ad8eefeb3b7d4559bb04322ce76f5-XXX&enrichSource=Y292ZXJQYWdlOzM0OTQ2OTQ1MjtBUzoxMTM2MTM3ODI1NDYwMjI1QDE2NDc4ODc3NzQxNjY%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Makram-Soui?enrichId=rgreq-660ad8eefeb3b7d4559bb04322ce76f5-XXX&enrichSource=Y292ZXJQYWdlOzM0OTQ2OTQ1MjtBUzoxMTM2MTM3ODI1NDYwMjI1QDE2NDc4ODc3NzQxNjY%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Saudi-Electronic-University?enrichId=rgreq-660ad8eefeb3b7d4559bb04322ce76f5-XXX&enrichSource=Y292ZXJQYWdlOzM0OTQ2OTQ1MjtBUzoxMTM2MTM3ODI1NDYwMjI1QDE2NDc4ODc3NzQxNjY%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Makram-Soui?enrichId=rgreq-660ad8eefeb3b7d4559bb04322ce76f5-XXX&enrichSource=Y292ZXJQYWdlOzM0OTQ2OTQ1MjtBUzoxMTM2MTM3ODI1NDYwMjI1QDE2NDc4ODc3NzQxNjY%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mabrouka-Chouchane?enrichId=rgreq-660ad8eefeb3b7d4559bb04322ce76f5-XXX&enrichSource=Y292ZXJQYWdlOzM0OTQ2OTQ1MjtBUzoxMTM2MTM3ODI1NDYwMjI1QDE2NDc4ODc3NzQxNjY%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mabrouka-Chouchane?enrichId=rgreq-660ad8eefeb3b7d4559bb04322ce76f5-XXX&enrichSource=Y292ZXJQYWdlOzM0OTQ2OTQ1MjtBUzoxMTM2MTM3ODI1NDYwMjI1QDE2NDc4ODc3NzQxNjY%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ecole_Nationale_des_Sciences_de_lInformatique?enrichId=rgreq-660ad8eefeb3b7d4559bb04322ce76f5-XXX&enrichSource=Y292ZXJQYWdlOzM0OTQ2OTQ1MjtBUzoxMTM2MTM3ODI1NDYwMjI1QDE2NDc4ODc3NzQxNjY%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mabrouka-Chouchane?enrichId=rgreq-660ad8eefeb3b7d4559bb04322ce76f5-XXX&enrichSource=Y292ZXJQYWdlOzM0OTQ2OTQ1MjtBUzoxMTM2MTM3ODI1NDYwMjI1QDE2NDc4ODc3NzQxNjY%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Narjes-Bessghaier?enrichId=rgreq-660ad8eefeb3b7d4559bb04322ce76f5-XXX&enrichSource=Y292ZXJQYWdlOzM0OTQ2OTQ1MjtBUzoxMTM2MTM3ODI1NDYwMjI1QDE2NDc4ODc3NzQxNjY%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Narjes-Bessghaier?enrichId=rgreq-660ad8eefeb3b7d4559bb04322ce76f5-XXX&enrichSource=Y292ZXJQYWdlOzM0OTQ2OTQ1MjtBUzoxMTM2MTM3ODI1NDYwMjI1QDE2NDc4ODc3NzQxNjY%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ecole_de_Technologie_Superieure2?enrichId=rgreq-660ad8eefeb3b7d4559bb04322ce76f5-XXX&enrichSource=Y292ZXJQYWdlOzM0OTQ2OTQ1MjtBUzoxMTM2MTM3ODI1NDYwMjI1QDE2NDc4ODc3NzQxNjY%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Narjes-Bessghaier?enrichId=rgreq-660ad8eefeb3b7d4559bb04322ce76f5-XXX&enrichSource=Y292ZXJQYWdlOzM0OTQ2OTQ1MjtBUzoxMTM2MTM3ODI1NDYwMjI1QDE2NDc4ODc3NzQxNjY%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohamed-Wiem-Mkaouer-2?enrichId=rgreq-660ad8eefeb3b7d4559bb04322ce76f5-XXX&enrichSource=Y292ZXJQYWdlOzM0OTQ2OTQ1MjtBUzoxMTM2MTM3ODI1NDYwMjI1QDE2NDc4ODc3NzQxNjY%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohamed-Wiem-Mkaouer-2?enrichId=rgreq-660ad8eefeb3b7d4559bb04322ce76f5-XXX&enrichSource=Y292ZXJQYWdlOzM0OTQ2OTQ1MjtBUzoxMTM2MTM3ODI1NDYwMjI1QDE2NDc4ODc3NzQxNjY%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Rochester-Institute-of-Technology?enrichId=rgreq-660ad8eefeb3b7d4559bb04322ce76f5-XXX&enrichSource=Y292ZXJQYWdlOzM0OTQ2OTQ1MjtBUzoxMTM2MTM3ODI1NDYwMjI1QDE2NDc4ODc3NzQxNjY%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohamed-Wiem-Mkaouer-2?enrichId=rgreq-660ad8eefeb3b7d4559bb04322ce76f5-XXX&enrichSource=Y292ZXJQYWdlOzM0OTQ2OTQ1MjtBUzoxMTM2MTM3ODI1NDYwMjI1QDE2NDc4ODc3NzQxNjY%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohamed-Wiem-Mkaouer-2?enrichId=rgreq-660ad8eefeb3b7d4559bb04322ce76f5-XXX&enrichSource=Y292ZXJQYWdlOzM0OTQ2OTQ1MjtBUzoxMTM2MTM3ODI1NDYwMjI1QDE2NDc4ODc3NzQxNjY%3D&el=1_x_10&_esc=publicationCoverPdf

On the impact of aesthetic defects on the Maintainability of Mobile Graphical
User Interfaces: An Empirical Study I

Makram Soui1

College of Computing and Informatics Saudi Electronic University, Saudi Arabia

Mabrouka Chouchane2

School of computer science of Manouba, Tunisia

Narjes Bessghaier3

School of computer science of Manouba, Tunisia

Mohamed Wiem Mkaouer4

Rochester Institute of Technology

Marouane Kessentini5

University of Michigan

Khaled Ghedira6

Honoris United Universities

Abstract

As the development of Android mobile applications continues to grow to follow up its high increase in demand and
market share, there is a need for automating the evaluation of their graphical user interfaces and detect any associated
defects as they are perceived to lead to bad overall usability. Although, there is growth in research targeting the
assessment of mobile user interfaces, there is a lack of studies assessing their impact on quality. The goal of this
work, is to analyze the impact of defects on the maintainability of interfaces by studying the connection between the
existence of the defects and the change-proneness of interfaces. We empirically experiment the impact of 8 aesthetics
defects in 56 releases of 5 Android applications, as we explore the following research questions: (1) are developers
fixing the defects along the releases, (2) to what extent infected GUI classes are subject to change than other classes,
(3) to what extent this subjectivity is due to the presence of defects. Our empirical validation confirms that (1)
various defects typically exist in interfaces?, (2) the vulnerability of interfaces, infected with defects, to an increase of
changes?, and (3) some aesthetics defects are more severe than others?.

Keywords: Aesthetics defects, change-size, Correlation, Evolution of Android GUI
2010 MSC: 00-01, 99-00

IFully documented templates are available in the elsarticle package on CTAN.
1m.soui@seu.edu.sa
2chouchane.mabrouka@gmail.com
3bessghaier.narjess@gmail.com
4mwmvse@rit.edu
5marouane@umich.edu
6khaled.ghedira@universitecentrale.tn

Preprint submitted to Journal of LATEX Templates March 21, 2022

http://www.ctan.org/tex-archive/macros/latex/contrib/elsarticle

1. Introduction

With the evolution of smartphones, mobile applications (apps) are becoming one of the pillars of software market
URL (c). Nowadays, industry heavily relies on mobile apps to reach end-users swiftly and smoothly. Nearly 197
billion apps were downloaded in 2017 URL (d), and Android apps have been leading the market share with 87% in
2016 URL (a). One of the key features standing behind the exponential usage growth of mobile apps is their usability5

Paiano et al. (2013). Mobile apps are more user-centered by a trade-off between providing an interactive and appealing
design along with high-performance execution. Henceforth, the apps longevity in the market requires finding the right
compromise between continuously optimizing its features while maintaining its current performance. While mobile
clients typically can choose between various apps providing similar services, developers, on the other hand, are facing
the challenge of maintaining the high quality of their app’s design while rapidly evolving it with newly introduced10

features to guarantee their maintainability and competitiveness.
The tremendous amount of changes, introduced while evolving the app, is responsible for the deterioration of

its code design. These bad design decisions are known as code smells Fowler and Beck (1999), and their existence
negatively impacts the understanding and maintenance of the app’s codebase Yamashita and Moonen (2013); Lanza
and Marinescu (2007). These code smells can be classified into two categories: external and internal. Internal smells15

are obtained from the source code analysis, and indicate poor design decisions. As for external smells , they are
symptoms of poor usability choices, eventually experienced at the GUI level. Thereby, the good design of mobile
Graphical User Interfaces (GUI) plays an important role in promoting the apps quality.

Aesthetics requirements are the user interface or the end appearance of the application. Most of the time it keeps
changing between different versions. This happens especially when the end users demand a new set of requirements20

or complain about design choices. As it generally happens, the clients detect and request changes in the User Interface
(UI). Aesthetics visual design aims at improving the usability of the application and its maintainability for business
purpose. The need for a high visual attractiveness of the GUI is essential for the end users, so that the interaction
of the application becomes very simple and effective. In order to repair an issue with the GUI, clients will report
the problem and send their feedback to the development group through the Play stores where the apps are published.25

Developers are mostly concerned with the optimization of the functional aspect of the application than the GUI design
aspect as it is mostly rated as low negative impact factor. However, GUI’s code may achieve up to 45% of the total
application Myers (1995), and though they cannot create direct impact on the apps performance, they still can create
problems with the usability and productiveness among the users. Nevertheless the critical impact of functional bugs
than that of aesthetics defects, the latter still be a priority for end users.30

When several complaints are being received from end users, developers will try to meet these new requirements. And
it is here where severity points will be affected to each detected defect to prioritize its fixing. However, the question
that arises here is: do developers always succeed in meeting users needs and reduce the number of design defects. A
good beginning to such an endeavor is to:
1) control the evolution pace of aesthetics defects all along the apps evolution. We aim for getting an insight over the35

quality of performed code changes according to the number of defects in release r(k) and its subsequent r(k+1).
2) investigate whether infected classes are changed more frequently, and have a larger change-size than other non-
infected classes in terms of Change Frequency (CF) and change-size (CS).
3) study the types of aesthetics defects requiring more maintenance effort. mainly by causing a larger chunk of source
line-changes.40

Our main findings prove that infected GUI source files experience an increase in the change-size in comparison
with the noninfected ones. The change-size varies mainly depending on the type of the existent smells as it has been
proven for Android code smells Khomh et al. (2012). We believe the same reason implies for the UIs, where we
empirically shed the light to this matter. However, the approximation of defects severity is better performed using
qualitative analysis and developers surveys. Therefore, investigating the severity of GUI defects is part of our future45

work. Furthermore, we notice a large variation on defects impact on files proneness to changes, which advocates
prioritizing their correction with respect to severity.

The remainder of this paper is organized as follows: Section 2 defines the necessary terminology used in this
paper. Section 3 presents our empirical study and main research questions while Section 4 provides the empirical
validation. Section 5 discusses the key findings of the experiments while raising potential threats to their validity. The50

paper ends with Section 6 that concludes the empirical study and outlines our future directions.

2

2. Related work

Since there is no consensus on how to fix and prioritize the detected structural aesthetics defects. Several studies
have focused on estimating the severity of internal and external code smells.
These studies Olbrich et al. (2010); Li and Shatnawi (2007); Khomh et al. (2009); Mkaouer et al. (2017) analyzed the55

correlation between code smells types and look for a possible cause-effect relationship by verifying whether removing
a specific type of code smell results in reducing the system’s proneness to changes, which also shrinks the maintenance
overhead. In that vein, Olbrich et al. (2010) has empirically investigated the correlation between two smells God and
Brain classes with regard to their change frequency and change-size along different releases. The findings show that
class size made the God and Brain classes more subject to defects. Consequently, splitting functionalities over different60

classes will reduce the occurrence of code smells. Li and Shatnawi (2007), studied the correlation between code smells
and a class error probability in three releases of Eclipse (3.0, 2.1, 2.0). The results showed that infected classes by
Shotgun Surgery, God Class, and God Methods resulted in more class error probability than non-infected classes.
Khomh et al. (2009) conducted an empirical analysis on 13 different versions of Azureus and Eclipse considering 9
code smells, to better understand the relationship between infected code classes and class change-size. The results65

validate that classes containing smells are more exposed to frequent updates than the remaining, and this observations
hold across all versions and projects. They also observe a variance on change-proneness depending on the type of
the smell. Tufano et al. (2016) aimed at determining the developer’s perception of test smells and came out with
results showing that developers could not identify test smells very easily thus resulting in a need for automation. The
results also showed that when a test code is committed to the repository that’s the time when test smells are usually70

introduced. Bavota et al. (2012) conducted a human study and proved the strong negative impact of smells on test
code understandability and maintainability. Another empirical investigation by the same authors Bavota et al. (2015)
indicated that there is a high diffusion of test smells in both open-source and industrial software systems with 86% of
JUnit tests exhibiting at least one test smell. The second study shows that test smells have a strong negative impact
on program comprehension and maintenance. These empirical studies highlight the importance for the community to75

develop tools to detect test smells and automatically refactor them. Thought the external defect are detected at the GUI
level, they differ from the structural GUI defects that we are dealing with in this work. External smells are produced
through UI commands when a widget sends an event. The mending of these design smells requires rooting their cause
in the java source code where the UI listeners are declared and associated. Blouin et al. (2017), detected the Blob
listener smell by conducting a static code analysis procedure, and performed a refactoring operation by separating80

each command that composes a blob listener into a new UI listener applied on the same widget.
To the best of our knowledge, no prior studies considered the impact of aesthetics defects on the interfaces. Prag-

matically, are we deteriorating, maintaining or improving the UI structure as we modify the code? In fact, Android UI
layout is designed using Extensible Markup Language (XML) while Java is solicited for providing the core function-
ality. Therefore, the purpose of this paper is to help developers in the optimization of their GUI maintenance activities85

by studying the diffuseness of aesthetics defects for the same UI throughout several releases.

3. Background

3.1. GUI Aesthetic Defects
Samsung CEO Yun Jong Yong said- Good design is the most important way to differentiate ourselves from our90

competitors. Although, the word design is mostly addressed to the functional part of the application, there is another
fact as well beyond the functionality of a design: aesthetics, attractiveness and beauty Norman (2004). A good mobile
user interface (MUI) quality is compulsory to allow users interact smoothly with the app. That is why a suitable design
of the MUI is indispensable to increase the player loyalty towards an application. This latter is determined through
the engagement scale, which includes 6 elements: appeal, novelty, focused attention, felt involvement, usability and95

durability O’Brien and Toms (2010). In this study, we are focusing on the visual appearance of an interface and
its effect on user satisfaction. As a matter of fact, aesthetics is considered an essential factor in perceived usability
Silvennoinen et al. (2014). Consequently, it involves the user engagement level. An app can sustain in the market as
long as it fulfills users needs with the provided functionalities. However, the importance of a good aesthetics design
cannot be ignored. It is the visual attraction between a user and an app. Donald Norman, the UX expert, sees beauty100

3

Table 1: List of Aesthetics Defects.

Defects Description Abbrv.
Incorrect layout of widgets It is related to the incorrect arrangement of MUI compo-

nents. It concerns the alignment, dimension, orientation,
depth and position of layouts.

(ILW)

Overloaded MUI It is a bad density of MUI. In other words, users find the
mobile interface too dense and so difficult to read.

(OM)

Complicated MUI It is related to the MUI that includes too many widgets
and features which cannot meet the users’ needs.

(CM)

Incorrect data presentation It is the incorrect extraction of information and their dis-
play on the mobile screen.

(IDP)

InCohesion of MUI It is the lack of the interrelatedness of MUI components. (ICM)
Difficult navigation It is the of lack descriptive labels that can be used to de-

fine the additional information.
(DN)

Ineffective appearance of
widgets

It occurs when MUI widgets follow an unexpected lay-
out. It is related to the bad settings of the aesthetic aspect
of a UI

(IAW)

Imbalance of MUI It is an unequal distribution of the quantity of interactive
objects of a given MUI.

(IM)

as the momentum that forces us to buy products. Unfortunately, the role of visual elements in mobile applications is
not intensely investigated compared to functionality. However, Silvennoinen et al. (2014) has inspected how visual
appearance influences the user experience in the mobile app context. Thus, Aesthetics is seen as an element that
attracts and engages the app users. Türkyilmaz et al. (2015), has investigated the importance of providing both
aesthetics and functionality on websites interfaces by users opinion. The results show that aesthetics is as important105

as functionality and plays a significant role in user satisfaction. Accordingly, aesthetics and performance should go
hand in hand. Several tools have been proposed for MUI quality evaluation Soui et al. (2017),Bastien and Scapin
(1995),Zen and Vanderdonckt (2014).

In this study, we used our tool PLAIN Soui et al. (2017), which detects a set of 8 aesthetic defects devoted to MUI
evaluation. The detection is based on a set of 8 metrics inspired by Ngo et al. Ngo et al. (2000). We have adapted the110

desktop-oriented metrics to fit the mobile user interface context. PLAIN is based on the genetic algorithm technique
used for the generation of evaluation rules Ines et al. (2017). This approach has reached 70% of precision and recall.
Table 1, depicts the considered aesthetics defects and their definitions.

This paper presents an empirical study that quantifies the impact of GUI defects on XML files maintenance in
Android apps in means of the change frequency with which developers maintain the infected files before and after115

their infection. The following section details the design of our empirical study.

4. Empirical Study Design

4.1. Illustrative example

Users reviews may provide valuable information to help developers in improving an app’s functionality or a GUI
bug. This feedback is crucial to guide the developers app maintenance. A considerable amount of reviews are com-120

plaining about the usability of the user interface level. As this latter represents nearly 50 % of software code Myers
(1995); Park et al. (2013), it is of importance to assess the required maintenance effort for different GUI structural
issues. In Figure 1, we collected some users reviews complaining about how the UI of the Evernote application is
confusing to the user. We provide as a sample the structural aesthetic defects of the notebooks GUI of the Evernote
application. The mainly notable structural defect is the Imbalance of the GUI, that might be seen as an empty user125

interface (lack of features). An imbalanced GUI is aesthetically unpleasing and may provoke the need of employing

4

extra options. Improving the structural aesthetic feel and look of the GUI necessitates sometimes a drastic change of
the GUI code. In this study, we assess eight structural problems and their impact on the change size of the XML code.

Figure 1: Complaints about the low usability quality of the Evernote app

4.2. Research Methodology.
The goals of our study are: 1) we investigate whether infected GUI classes are changed more frequently and130

proportionally along with the system’s evolution, and have a more substantial change-size than non-infected GUI
classes. 2) we study whether particular kinds of aesthetics defects necessitate more changes.

The idea consists in controlling the change frequency and change-size of GUI classes. We sought precisely to
study the influence of infected GUI classes (XML files) change-size on the aesthetics defects. Our aim regards the
totality of XML files for each GUI of a release. As shown in Figure 2, our approach consists of producing two insights.135

Figure 2: Research methodology.

4.2.1. CF, CS variation
The detailed steps of our empirical study are as follwos: 1) We evaluate aesthetics defects of the evaluated app. 2)

We categorize the GUI classes into infected and non-infected ones. 3) We extract parameters from GitHub platform.

5

4) We measure the LOC change (LOCC) per class for each version of the same app as being an essential parameter140

for the change-size calculation. 5) We calculate the CF and the CS for each class. Finally, 6) we study data dispersion
of infected and non-infected classes. i.e., we analyze whether the presence of GUI defects relates to a higher CS and
CF.

4.2.2. Defects type impact on the CS.145

The association of Cs to each defect type is performed as follows: 1) We count the number of classes participating
in a specific type of aesthetic defect. 2) For each defect type we asses whether the participating classes have greater
CS variation comparing with classes participating in another type of defect.

Our computation is a manual process done via the GitHub platform. We go through all the versions of each
application considering the number of commits, and the change-size for each class. All the experimented data are150

available URL (b).
We do not consider the impact of defects type on the change frequency in this RQ, because we believe that the
correlation between the variables (type, CF) is not logical since the defect will impact the source code that is related to
the applied change-size. However, we can relate the CF to defects type when it comes to developers quality. Basically,
the CF will give us an indication on the change quality if the defect persists from a given version to the next one. We155

will target this hypothesis in our future work.
The Context consists of the change history of 5 selected Android applications from the Google Play Store. Mat-

termost: is a secure messaging app that connects to servers from behind your firewall. It is used by thousands of
companies around the world in 14 languages, and runs on Android and iOS. We analyzed 11 releases of Mattermost
in the years 2016-2017 from release V-1.1.4 to V-3.10. In 2018, the application has been extended to include 17160

versions which indicate its popularity. Openlauncher: a native full open source Android launcher application. It
supports many features as Double tap to sleep, Item customization on the desktop, and so many others. We analyzed
12 releases of Open launcher available on GitHub in 2017. It has 4.1 rating on Google Play store. Weather: a very
popular kind of applications, that forecasts weather conditions in your city and the globe. We analyzed 9 versions
between 2016-2017. It has 4.6 rating on Google Play store. Reddit: it provides users with all top trending topics,165

breaking news, viral video clips, and so on. We analyzed 11 releases of Reddit between 2013 and 2017. It has an
average rating of 4.6 in the Google Play store. Lightning: a lightweight fast web browser that uses simple material
design and gives the users lots of options to protect their privacy. This application is very popular on Google Play
store as it has a paid version. We analyzed 12 releases from 2015 to 2017. It has 4.1 rating on Google Play store.
Table 2 presents the applications technical characteristics.

Table 2: Characteristics of the tested android applications.

Characteristics Lightning Mattermost Weather Openlauncher Reddit

#Versions 12 11 10 12 11

#Revisions 1656 744 3140 2119 5374

Analyzed time-frame 2015-2017 2016-2017 2016-2017 2017 2013-2017

170

The number of selected projects relates to the previous studies that conduct any manual and qualitative analysis.
We verified that these apps represent a good sample by testing whether they satisfy the constraints of a well-engineered
project Munaiah et al. (2017). We also made sure that they are open source since our experiments rely on the analysis
of the code base of these apps along with all their commits, to replicate their evolution over releases.

Figure 3, reports the box plot of the number of aesthetics defects instances in our analyzed android applications.175

For each aesthetic defect, we aggregate its occurrence number in all the releases of the five applications. The box
plot bring out significant differences in the diffuseness of aesthetics defects. There are defects like Incorrect appear-
ance of widgets, InCohesion of MUI, Incorrect data presentation , and Imbalanced MUI are weakly frequent in the
applications. For instance, we found the highest number of Imbalanced MUI instances is 11 in the V3.2.0a-beta of

6

Figure 3: Number of Aesthetics defects instances in the analyzed applications.

Lightning app, leading to 0.2 probability of a class getting infected by this defect. However, it does exist in 69.6% of180

the releases. Noting that our study resulted in categorizing the Imbalanced MUI as the third defect having the highest
correlation with infected classes change-size. Therefore, the box plot results highlight that although the IM defect is
harmful its distribution across the applications is limited. Incorrect appearance of widgets is also poorly defused. It
affects 41% of the releases and in the most two affected releases (weather V3.0.1, and OpenLauncher V5.8 (alpha)) ,
only 21%, and 14.8% respectively are instances of this defect. The InCohesion of MUI affects 48.2% of the releases,185

with a probability of 0.26 of classes to get infected by this defect type. The highest number of instances of this defect
in a single release (OpenLauncher V alpha2) is 15. In particular, the classes affected by the InCohesion of MUI in
OpenLauncher were 65 out of 101 (65%).
Other aesthetics defects are in opposite quite diffused. For example, we found instances of the Overloaded MUI in
100% of the analyzed releases, with a probability of 0.71% of appearing in a class. In particular, weather V3.0.1 has190

the highest number of this defect type (40 instances) in a total number of 57 classes since it is affecting 70.17% of the
classes. The average of the 56 releases is affected by 20 Overloaded MUI, with 27 in OpenLauncher.

Another proliferated aesthetic defect is the Complicated MUI, that affects the totality of the releases, with a proba-
bility of 0.46 of being present in a class, with the highest number of instances (26) found in a weather release V3.0.1.
Finally, the Difficult navigation with 96.42% of affected releases with a probability of 0.41 of being affected.195

Interestingly, we noticed that Weather application has the highest number of three defects: Incorrect layout of
widgets, Overloaded MUI, and Complicated MUI. We downloaded two releases with big time-frame (time of release)
V2.0 (2018-03-19), and V1.1 (2016-11-13) from F-droid platform to understand the reasons behind the presence of
these defects. We chose to show the evolution of one User interface (Weather overview UI) for sake of clarity as seen
in Figure ??. We evaluated these two UIs by PLAIN and we got the following defects respectively OM, CM, IM,200

IAW, ILW, DN, IDP, and OM, IAW, ILW.
The first thing that leaps to the eyes, is the density of defects the weather overview UI has in V1.1 comparing to the
weather overview UI in V2.0. The number of defects dropped down from 7 to 3. Weather overview V1.1, has different
big quantity of elements making it look charged. Al thought, the UI V2.0 has a minimum and structured elements, the
non-inter-relatedness of layouts makes it feel overloaded. Although, some new design materials, and more structuring205

of the widgets layouts have been added to V2.0, the Overloaded MUI and the Incorrect layout of widgets persist. We
can explain this persisting and the reason behind having the OM and CM as the most frequent defects by the nature of
the implicated structural metric, where this latter takes as parameters in the nominator the result of all other metrics.

7

Thus, considering more characteristics of the UI, making it so delicate.

Figure 4: Weather Overview UI in two consecutive releases V1.1 (left), and V2.0 (right)

4.3. Research Questions210

Based on the extracted data from each application, we are looking to answer the following questions. The corre-
sponding hypotheses for this study are formulated one-sided.
RQ1: Is the application more susceptible to GUI defects through its several updates? This is a preliminary investiga-
tion that aims to control the existence of aesthetics defects along the releases by testing the following hypothesis.
H10: The application is more susceptible to GUI defects through its evolution.215

RQ2: Are infected GUI classes more change-prone than non-infected GUI classes? We are interested to see whether
developers mostly focus on refactoring infected classes over time by testing the following null hypotheses.
H20: The CF of infected GUI classes is equal to the CF of non-infected GUI classes.
RQ3: Do infected GUI classes require more LOC change than non-infected classes? We examine whether the
presence of aesthetics defects leads to a significant increase in the number of touched lines of code by testing the220

following null hypothesis.
H30: The CS of infected GUI classes is equal to the CS of non-infected GUI classes.
RQ4: Are particular types of GUI defects responsible for the change-size? We examine the influence of particular
types of GUI defects on the CS by testing this null hypothesis:
H40: GUI classes infected with a given type of GUI defect have not more change-size in comparison to other classes.225

4.4. Variables Selection
To answer our null hypotheses, we construct the analysis models based on the specification of the following

dependent and independent variables related to each research question.
Dependent variables: RQ2 and RQ3, we use the Mann-Whitney U-test to understand whether the change frequency
(RQ2), and the change-size (RQ3) differ based on class type. i.e., our dependent variables would be the ”CF” for RQ2230

and ”CS” for RQ3.
RQ4, The change-size is the number of LOC changes that a class underwent (i.e., addition/removal/modification)
between version v(n) and its anterior v(n-1) excluding comments and blank lines. For each release of the application,
each class is characterized by its change-size and the total number of defects in which it participates.
Independent variables: RQ2 and RQ3, would be the ”class type”, which has 2 groups (infected GUI and noninfected235

GUI).
RQ4, we extract the existence of 8 types of GUI defects. Each variable Gc,d,v refers to how many instances of a defect
d a GUI class c has in a version v.

8

4.5. Measurement Method
In RQ1: In order to track the number of GUI smells over the different releases, we consider the evaluation of240

PLAIN tool for each app release.
In RQ2 and RQ3: we have relied on the calculation of the change frequency and the change-size given. (1) the

change frequency (CF): refers to whether a class underwent at least a change between version v (participating or
not in a defect) and the subsequent version v + 1. The CF is measured as the number of commits for each class.
CF≤ CS. (2) the change-size (CS): it is how many lines of code have been changed within a class in a release. i.e.,
(addition/removal/modification) CS≥CF
To test our hypotheses, the change frequency (CF), and the change-size (CS) were calculated for the infected and
noninfected GUI classes.

CF(Ct) =

∑n
c=1 NC(Ct) ∗ 100

LOCC(Ct)
(1)

CS (Ct) =

∑n
c=1 CS IZE(Ct) ∗ 100

LOCC(Ct)
(2)

Where:
CT : class C at time t;
NC(Ct): returns the number of changes made in class c between revision n and revision n-1;
CSIZE(Ct): returns the sum of code changes on class c between revision n and revision n-1;245

LOCC(Ct): returns the LOC change (LOCC) per class for each version of the same app.
Values are multiplied by 100 to avoid problems with rounding numbers when calculating CF and CS.
A nonparametric Mann-Whitney U-test is opted similarly to Olbrich et al. (2010) since the data are abnormally
distributed and the sample size is small Sheskin (2003). An alpha value of 0.1 was used to deal accurately with
our observations that do not exceed 40. For the sake of visibility, and since there are no substantial variations of the250

number of classes across releases, we aggregated data obtained from the releases of each application, rather than for
each release separately.

In RQ4: our goal is to deduce the impact of specific kinds of GUI defects on the CS of smelly classes.
We modeled the correlation of existent GUI defects with CS using logistic regression model Khomh et al. (2012). By
definition, this model relies on the definition of dependent and independent variables. Dependent variables are natu-255

rally containing a binary decision 0, 1, for example, they represent whether there is a change or not. The multivariate
logistic regression model is based on the formula Hosmer and Lemesbow (1980):

π(X1, X2, ..., Xn) =
eC0+C1.X1+...+Cn.Xn

1 + eC0+C1.X1+...+Cn.Xn
(3)

where:
Xj represent modeled phenomenon characteristics, particularly the number of defects of kind j an interface has. i.e.,
when the model is applied to the GUI class c of release v.260

j are the model coefficients.
π is a value on the logistic regression curve.
As the value of π close to 1 signifies a higher chance of a GUI undergoing a potential change and so H04 is rejected.
Afterward, we consider each type of defect across the analyzed versions of each app, and we report how many times
the p-values extracted from our model were found to be significant.265

5. Statistical results of research questions

Results of RQ1: We calculate the percentage of aesthetic defects along the application evolution. In the Figures
5-9, the x-axis represents the studied releases of each app, the y-axis on the left side represents the total number of
aesthetic defects, and infected GUI classes per release.

H10 : The application is more susceptible to GUI defects through its evolution. The analysis of GUI defects270

occurrence frequency through the five apps evolution, denotes that the applications did not have more smells over
updates. Referring to graphs 5 to 9, we can conclude that this statement is totally dependent on the number of infected
GUI classes in each release. It is noticeable that for the five applications, the behavior of aesthetics defects curve did
follow the rate of the infected classes curve. So, we fail to accept (H1).

9

Figure 5: Defects density of Lightning. Figure 6: Defects density of Mattermost.

Figure 7: Defects density of Openlauncher. Figure 8: Defects density of Reddit.

Figure 9: Defects density of Weather.

Results of RQ2, RQ3: Tables 3-7 show the results of the hypotheses tests. In all the tables, a gray-shaded p-value275

row indicates that the null hypothesis is rejected and thus the alternative hypothesis is supported. For all the tests, we
used a one-sided test because we investigate only whether GUI defects relate to an increase in the change frequency
and change-size. In the result tables presented below, n represents the samples size, M for the median, sd for the
standard deviation, U for the calculated U-test, and P for P-value.

H20: The CF of infected GUI classes is equal to the CF of non-infected GUI classes.280

The hypothesis is rejected by all five apps. Tables 3-7 show that the medians of CF for infected GUI Classes are
remarkably (3-25-30-30-27 times) higher than for non-infected GUI classes. These results show that each infected
GUI class line of code (LOC) is changed more often than non-infected classes.

10

H30: The CS of infected GUI classes is equal to the CS of non-infected GUI classes.
Tables 3-7 show that the size of changes performed per line of code in the infected GUI classes is, noticeably, higher285

than for non-infected classes. For example, in Mattermost app, the change-size for infected GUI classes is on average
60 times higher than non-infected GUI classes. The alternative hypothesis is supported by all five applications.

Table 3: Results for Lightning app.

infected
classes

non-Infected
classes

n: 15 11

CF

M: 0.523 0.228
sd: 0.238 0.202
P: 0.0005338
U: 146

CS

M: 340 96
sd: 206 92.9
P: 0.0001141
U: 154

Table 4: Results for Reddit app.

Infected
classes

non-Infected
classes

n: 21 10

CF

M: 0.489 0.0195
sd: 0.144 0.0904
P: 6.096e-06
U: 209

CS

M: 496 13.5
sd: 130 5.86
P: 5.026e-06
U: 210

Table 5: Results for Weather app.

Infected
classes

non-Infected
classes

n: 7 6

CF

M: 0.799 0.0256
sd: 0.138 0.0425
P: 0.001703
U: 42

CS

M: 879 23
sd: 161 9.01
P: 0.001703
U: 42

Table 6: Results for Mattermost app.

Infected
classes

non-Infected
classes

n: 7 6

CF

M: 0.799 0.0256
sd: 0.138 0.0425
P: 0.001703
U: 42

CS

M: 699 10
sd: 108 6.95
P: 0.001681
U: 42

Table 7: Results for openlauncher app.

Infected
classes

non-Infected
classes

n: 42 11

CF

M: 0.683 0.0567
sd: 0.157 0.116
P: 2.148e07
U: 462

CS

M: 892 209
sd: 460 93.2
P: 2.149e-07
U: 462

Results of RQ4: Table 8 summarizes the results of a logistic regression at a significance level of 0.5 for the
relation between kinds of GUI defects and change-size of a class. The % cell in the table represents the number of
a GUI defect with the percentage of classes significantly correlating with this latter. The gray shaded cell shows a290

p-value inferior to 0.5, which means the given defect substantially correlates with the change-size, and that we reject

11

the null hypotheses. We highlight the intersection of defects correlating with more than 50% of classes with a pink
shade.

H40: GUI classes with particular kinds of GUI defects have not more change-size than other classes.
For example, the cell at the intersection of the ”Lightning” app with the ”Incorrect layout of widgets” defect shows295

a significant impact of the defect on the CS with a 0.0033. This indicates that 79% of classes participating in ”Incorrect
layout of widgets” are more change-prone than other non participating infected classes. Moreover, we do notice that
75% of the pink shaded cells have a strong correlation < 0.1 whenever we have more than 50% of correlating classes.
Which we claim that the involved defects are more severe (requiring more modifications) than the other defects.

From Table 8, we can reject H40 for some defects that are significantly correlated to change-size in at least 60%300

of classes. Following our analysis, only ”Overloaded MUI” has a significant impact on change-size in all applications
with more than 60% of participating classes. Thus, classes participating in this defect are more likely to change than
classes participating in others defects. We claim that being the ”Overloaded MUI” the

12

Ta
bl

e
8:

T
he

pe
rc

en
ta

ge
of

in
fe

ct
ed

cl
as

se
s

w
he

re
ea

ch
de

fe
ct

si
gn

ifi
ca

nt
ly

co
rr

el
at

es
w

ith
ch

an
ge

-s
iz

e
al

on
g

w
ith

th
e

nu
m

be
ro

fd
ef

ec
ti

n
th

e
co

rr
el

at
in

g
cl

as
s

D
ef

ec
ts

ch
an

ge
-s

iz
e

L
ig

ht
ni

ng
M

at
te

rm
os

t
R

ed
di

t
O

pe
n

la
un

ch
er

W
ea

th
er

%
P-

va
l

%
P-

va
l

%
P-

va
l

%
P-

va
l

%
P-

va
l

Im
ba

la
nc

e
of

M
U

I
45

(6
0%

)
0,

30
79

77
(8

3%
)

0,
13

44
65

(5
9%

)
0,

02
39

10
7(

79
%

)
<

0,
00

01
54

(3
4%

)
0,

34
09

In
co

rr
ec

tl
ay

ou
to

fw
id

ge
ts

50
(7

9%
)

0,
00

35
24

(3
5%

)
0,

35
37

34
(3

0%
)

<
0,

00
01

11
3(

83
%

)
0,

27
83

38
(2

4%
)

0,
92

64

D
iffi

cu
lt

na
vi

ga
tio

n
14

(2
6%

)
0,

05
43

3(
12

%
)

0,
87

25
50

(4
5%

)
0,

04
65

50
(3

7%
)

0,
00

06
10

0(
64

%
)

<
0,

00
01

In
co

rr
ec

td
at

a
pr

es
en

ta
tio

n
84

(6
2%

)
0,

43
09

5(
16

%
)

0,
22

31
79

(7
1%

)
0,

00
3

12
2(

90
%

)
0,

72
51

31
(2

0%
)

0,
67

20

In
eff

ec
tiv

e
ap

pe
ar

an
ce

of
w

id
ge

ts
45

(5
9%

)
0,

24
50

6(
17

%
)

0,
99

78
57

(5
1%

)
0,

08
63

99
(7

3%
)

0,
11

25
75

(4
8%

)
0,

23
08

In
C

oh
es

io
n

of
M

U
I

12
0(

70
%

)
0,

11
27

7(
18

%
)

0,
86

67
43

(3
9%

)
0,

00
60

50
(3

7%
)

0,
48

76
49

(3
1%

)
0,

00
15

O
ve

rl
oa

de
d

M
U

I
65

(8
3%

)
0,

00
69

62
(7

0%
)

0,
00

19
82

(7
4%

)
<

0,
00

01
93

(6
8%

)
<

0,
00

01
10

4(
67

%
)

0,
02

35

C
om

pl
ic

at
ed

M
U

I
59

(7
3%

)
0.

00
03

78
(8

7%
)

0,
43

74
45

(4
0%

)
0,

18
46

48
(3

5%
)

0,
00

07
64

(4
1%

)
0,

00
07

13

most defect correlating with the change-size, it is seen severe from an end-user point of view. We believe that an
overloaded UI will hinder the user from easily and successfully interacting with the application. Other defects have305

a significant impact on the change-size of only a subset of applications and infected classes like Difficult navigation,
InCohesion of MUI, and Complicated MUI in Reddit, OpenLauncher, and Weather. Incorrect data presentation and
Incorrect layout of widgets in Mattermost.

6. Discussion

In this section, we discuss the results of our experiment, and provides the implications of the study for research310

and software engineering community.

6.1. Experiment results analysis
RQ1: Referring to the graphs 5-9, we can deduce that the curves of infected GUI classes and aesthetics defects

evolve at the same pace. At this stage of the study, the intensity of the correlation can be only justified based on the
behavior of bad defects in relation with the number of infected classes (GUI), and it is for our future work to know pre-315

cisely the root causes behind this correlation. However, we can notice that in the case when the change-size decreases
from a release to the subsequent, the number of defects decreases as well and vise versa. Thus, when developers make
lots of changes to a class, there is a high chance of jeopardizing the quality of the UI and produce many additional
defects. This interpretation raises the possibility of other external factors interfering in such conduct.

320

RQ2 and RQ3: From Tables 3-7, it can be noticed that infected and non-infected GUI classes were significantly
different regarding their change frequency and change-size. We showed that CS and CF of infected classes is signifi-
cantly larger than respectively the CS and CF of non-infected classes. This result is not surprising since maintenance
activities will target mostly infected classes to clean out the defects. We can conclude that the presence of aesthetics
defect has an impact on the change-proneness and change-size of a class.325

RQ4: From Table 8, we conclude that there is a relation between kinds of GUI defects with the classes change-size
but not for all defects and not for all the applications.
We fail to accept H40 for the five applications for the Overloaded MUI defect. Classes participating in such defect
are more change-prone than any other classes, possibly because these classes are the most related to the launching330

activities, hence, most complex and operative. Thus, they are more likely to be changed to fix the GUI defects, and
consequently, faults are more expected to be present. Yet, we fail to reject the hypotheses for the ”Incorrect data
presentation” for the OpenLauncher application, where 90% of classes participate in the defect, yet no correlation?.
We recall that the Openlauncher app is an Android launcher application that lets users customize their home screen
(adding widgets, launch apps, add animations, transitions, etc.). If we review in detail the nature of a launcher appli-335

cation, we will see that it does not support the kind of an incorrect data presentation GUI defect. Because there is no
auto-display of information on the screen by the application. It is all in the hands of the user on how to display his own
chosen content on the UI. Consequently, we indicate that in this application the number of defects has no interference
in the change-size of classes. However, we cannot yet generalize the conclusion at this stage without a deep empirical
test.340

Table 9 generalizes the findings of the logistic regression for the five applications. We rated the defects based on
the sum of the number of classes that significantly correlate with defects in the five applications.

In a scale of five applications, we found out that ”Overloaded MUI”, ”Complicated MUI,” and ”Imbalance of
MUI” are the top three defects having an impact on the change-size of the participating classes consecutively. In a345

scale of one application, the ranking might vary. For example, we ranked the ”Difficult navigation” defect as number
7 in the general scale is one of the least defects that correlate with classes. However, in the Weather application,
64% of classes participate in this defect with the strongest correlation of <0.0001. This result shows that the defect
is impacting the CS of classes hugely. i.e., developers mostly tend to fix the ”Difficult navigation” defect. Thus, the
defect is considered the most severe in that context.350

We claim that GUI defects might vary of specificities from an MUI to another.i.e., if an Overloaded MUI defect is
detected, it does not necessarily mean that developers will rush to fix this defect. In some cases not correcting the most

14

severe deficiency on the CS and fix another defect in favor of the latter is the preferable way. As we have shown in the
illustrative example section, adjusting the difficult navigation issue as being not severe on the change-size compared
with Overloaded MUI defect will correct the problem. However, for an aesthetic reason, it is favorable to fix the355

Overloaded MUI issue and do extra workload to produce an appealing UI.

Table 9: Summary of our findings for RQ4.

Rank Defects Lightning Mattermost Reddit Open
Launcher

Weather %Class

1 OM X X X X X 75%

2 CM X X X X X 61%

3 IM X X X X X 56.5%

4 IAW X — X X X 60.5%

5 ILW X X X X — 56.5%

6 ICM X — X X X 50%

7 DN X — X X X 45%

8 IDP X X X — — 43.5%

6.2. Implications for research

Based on recent studies on GUI evaluation (event-driven level and structural level), developers are quite enforced
to perform separate maintenance operations on both java source code and XML files. This practice will result in
maintenance workload and time consumption whenever functional and structural GUI defects are detected. Taking360

into account the severity of defects types provides guidance to software engineers on improving their maintenance
operations. Furthermore, It would be interesting to investigate the severity of these defects types on two levels: 1) the
severity of the defects on a class change-proneness.i.e., how much LOC changes a defect type requires to fix it. 2)
the severity on the user satisfaction. From a user point of view, which defect is more likely to deteriorate the usability
level of the interface. This hypotheses can be further addressed in future studies.365

Our results can be of interest to developers, who need to know the impact of defects on their maintenance activities,
in order to predict their effort and workload. Knowing the effect of an existent defect will help developers to choose
between two scenarios: 1) maintain some GUI design problems to do the minimum modifications. This solution can
be of interest to managers when there is a time-line that must be respected. 2) choose to fix the most effort requiring370

defect to provide better usability or UX.

7. Threats to Validity

In this section, we present factors that may impact the applicability of our observations in real-life situations.

7.1. Internal Validity

It raises potential concerns regarding any factors that may attenuate the observations. For our work, we rely on375

change-proneness and change-size as two main measurements we are correlating with the existence of defects. In
fact, many factors may be also responsible for increasing the proneness and size of changes. For instance, the change
frequency may be easily be implied by the importance of the UI. If an interface represents the home-screen of the
app, then, eventually, it would be undergoing an important set of regular updates. This is mitigated by investigating

15

several releases of the same interfaces as the change frequency across releases will not impact our model unless there380

is a drastic change that may be captured in a major release.
Another relevant example that may trigger a wider set of changes is the density of the interface, i.e., UIs with more

services tend to be contain a higher number of components to maintain. To mitigate this, our model normalizes over
the LOC. Furthermore, the density of an interface of also considered as part of the defects and it would be relevant for
our study to compare interfaces with various number of components.385

The data was collected from the applications hosted repositories on GitHub. Based on each contributors changes,
we were able to get the related change frequency and the change-size for each class of the application. However, we
didn’t consider the quality of contributors, that we claim to be a powerful effect factor on our experimental results.

7.2. Construct Validity

It concerns the tools used in our data collection and analysis. In our context, we used PLAIN to detect defects.390

Although the precision of PLAIN has been previously assessed Soui et al. (2017), any false positives issued by the
tool has a direct impact on our study.

Furthermore, we manually verified the extraction of the information used for the experiments since the number of
releases and projects is reasonable. However, manual activities can relatively increase the error rate, that might infect
our measurements.395

7.3. External Validity

It questions the generalizability of our findings. We have purposely chosen 5 different Android projects to diversify
the UIs under analysis. We also explored the evolution of UIs by visiting various releases of each app.

This diverse set of UIs containing different structures and functionalities that strengthen the generalization of our
observations. Yet, we would like to extend our dataset and perform a larger-scale empirical study to challenge our400

current findings.

8. Conclusion

In this paper, we reported an empirical study, performed on five applications, each of which has more than nine
releases. It provides a clue that aesthetics defects presence do influence a class change frequency and change-size.
We assessed the relationship between the CS and CF of infected and non-infected GUI classes, which resulted in a405

robust significant difference for the five applications. Following, we investigated the impact of defects types on the
change-size. The outcomes show that some particular defects contributed to more change-size than others.

The debate here concerns ”When a defect should be removed?. Some designers might choose to fix the defect
with the minimum impact on change-size. Others might prioritize the visual aesthetic attractiveness of the user
interface, and choose to fix the defect with the higher impact on the change-size. As designers seek to provide410

seamless UIs, the higher probability will be for the second choice. However, the point that arises here is: If a UI has,
for instance, the ”Overloaded MUI” defect revealing a high components density, with a balanced, not complicated,
and comprehensible UI, should we consider this defect as a harmful defect?. One of our future directions will be to
work on the restructuring of the ”Overloaded MUI” aesthetic defect. We tend to see whether reducing the number of
components in a UI will increase or not its visual attractiveness and usability?.415

In a high-level study, we showed that the number of aesthetic defects and infected GUI classes do match all along
the app’s evolution. In future work, we want to decipher this matching in a deep-level. To generalize our findings, we
plan to enlarge the scale of experimented applications. It would be interesting also, to take into account the number
of collaborators and their quality, which we assume to be an indispensable agent in the maintenance activities. This
insight will let us know how to measure the risk of having a defect while modifying an application source code.420

Our defects severity evaluation of the change-size is project dependent, which means it might vary depending on
the parameters and the architecture of each application. Except that we have seen the same behavior of defects impact
mostly across all projects. Still, we plan on extending our studied projects to generalize our findings.

16

References

, a. https://android.jlelse.eu/apple-vs-android-a-comparative-study-2017-c5799a0a1683.425

, b. https://github.com/mabroukachouchane/correlation.
, c. https://www.abiresearch.com/press/ android-will-account-for-58-of-smartphone-app-down,.
, d. https://www.statista.com/statistics/271644/worldwide-free-and-paid-mobile-app-store-downloads/.
Bastien, J.C., Scapin, D.L., 1995. Evaluating a user interface with ergonomic criteria. International Journal of Human-Computer Interaction 7,

105–121.430

Bavota, G., Qusef, A., Oliveto, R., De Lucia, A., Binkley, D., 2012. An empirical analysis of the distribution of unit test smells and their impact on
software maintenance, in: Software Maintenance (ICSM), 2012 28th IEEE International Conference on, IEEE. pp. 56–65.

Bavota, G., Qusef, A., Oliveto, R., Lucia, A., Binkley, D., 2015. Are test smells really harmful? an empirical study. Empirical Softw. Engg. 20,
1052–1094. doi:10.1007/s10664-014-9313-0.

Blouin, A., Lelli, V., Baudry, B., Coulon, F., 2017. User interface design smell: Automatic detection and refactoring of blob listeners. arXiv435

preprint arXiv:1703.10674 .
Fowler, M., Beck, K., 1999. Refactoring: improving the design of existing code. Addison-Wesley Professional.
Hosmer, D.W., Lemesbow, S., 1980. Goodness of fit tests for the multiple logistic regression model. Communications in statistics-Theory and

Methods 9, 1043–1069.
Ines, G., Makram, S., Mabrouka, C., Mourad, A., 2017. Evaluation of mobile interfaces as an optimization problem. Procedia Computer Science440

112, 235–248.
Khomh, F., Di Penta, M., Guéhéneuc, Y., 2009. An Exploratory Study of the Impact of Code Smells on Software Change-proneness. École Poly-

technique de Montréal, Tech. Rep. EPM-RT-2009-02 URL: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.150.
1292&rep=rep1&type=pdf, doi:10.1.1.150.1292.

Khomh, F., Di Penta, M., Guéhéneuc, Y.G., Antoniol, G., 2012. An exploratory study of the impact of antipatterns on class change-and fault-445

proneness. Empirical Software Engineering 17, 243–275.
Lanza, M., Marinescu, R., 2007. Object-oriented metrics in practice: using software metrics to characterize, evaluate, and improve the design of

object-oriented systems. Springer Science & Business Media.
Li, W., Shatnawi, R., 2007. An empirical study of the bad smells and class error probability in the post-release object-oriented system evolution.

Journal of Systems and Software 80, 1120–1128. doi:10.1016/j.jss.2006.10.018.450

Mkaouer, M.W., Kessentini, M., Cinnéide, M.Ó., Hayashi, S., Deb, K., 2017. A robust multi-objective approach to balance severity and importance
of refactoring opportunities. Empirical Software Engineering 22, 894–927.

Munaiah, N., Kroh, S., Cabrey, C., Nagappan, M., 2017. Curating github for engineered software projects. Empirical Software Engineering 22,
3219–3253.

Myers, A.C., 1995. Bidirectional object layout for separate compilation, in: ACM SIGPLAN Notices, ACM. pp. 124–139.455

Ngo, D., Teo, L., Byrne, J., 2000. Formalising guidelines for the design of screen layouts. Displays 21, 3–15.
Norman, D.A., 2004. Emotional design: Why we love (or hate) everyday things. Basic Civitas Books.
O’Brien, H.L., Toms, E.G., 2010. The development and evaluation of a survey to measure user engagement. Journal of the Association for

Information Science and Technology 61, 50–69.
Olbrich, S.M., Cruzes, D.S., Sjøberg, D.I., 2010. Are all code smells harmful? a study of god classes and brain classes in the evolution of three460

open source systems, in: Software Maintenance (ICSM), 2010 IEEE International Conference on, IEEE. pp. 1–10.
Paiano, A., Lagioia, G., Cataldo, A., 2013. A critical analysis of the sustainability of mobile phone use. Resources, Conservation and Recycling

73, 162–171.
Park, J., Han, S.H., Kim, H.K., Cho, Y., Park, W., 2013. Developing elements of user experience for mobile phones and services: survey, interview,

and observation approaches. Human Factors and Ergonomics in Manufacturing & Service Industries 23, 279–293.465

Sheskin, D.J., 2003. Handbook of parametric and nonparametric statistical procedures. crc Press.
Silvennoinen, J., Vogel, M., Kujala, S., 2014. Experiencing visual usability and aesthetics in two mobile application contexts. Journal of usability

studies 10, 46–62.
Soui, M., Chouchane, M., Gasmi, I., Mkaouer, M.W., 2017. Plain: Plugin for predicting the usability of mobile user interface., in: VISIGRAPP (1:

GRAPP), pp. 127–136.470

Tufano, M., Palomba, F., Bavota, G., Di Penta, M., Oliveto, R., De Lucia, A., Poshyvanyk, D., 2016. An empirical investigation into the nature of
test smells, in: Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering, ACM, New York, NY, USA.
pp. 4–15. doi:10.1145/2970276.2970340.

Türkyilmaz, A., Kantar, S., Bulak, M.E., Uysal, O., et al., 2015. User experience design: Aesthetics or functionality?, in: Managing Intellectual
Capital and Innovation for Sustainable and Inclusive Society: Managing Intellectual Capital and Innovation; Proceedings of the MakeLearn and475

TIIM Joint International Conference 2015, ToKnowPress. pp. 559–565.
Yamashita, A., Moonen, L., 2013. Exploring the impact of inter-smell relations on software maintainability: An empirical study, in: Software

Engineering (ICSE), 2013 35th International Conference on, IEEE. pp. 682–691.
Zen, M., Vanderdonckt, J., 2014. Towards an evaluation of graphical user interfaces aesthetics based on metrics, in: Research Challenges in

Information Science (RCIS), 2014 IEEE Eighth International Conference on, IEEE. pp. 1–12.480

17

View publication statsView publication stats

http://dx.doi.org/10.1007/s10664-014-9313-0
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.150.1292&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.150.1292&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.150.1292&rep=rep1&type=pdf
http://dx.doi.org/10.1.1.150.1292
http://dx.doi.org/10.1016/j.jss.2006.10.018
http://dx.doi.org/10.1145/2970276.2970340
https://www.researchgate.net/publication/349469452

	Introduction
	Related work
	Background
	GUI Aesthetic Defects

	Empirical Study Design
	Illustrative example
	Research Methodology.
	CF, CS variation
	Defects type impact on the CS.

	Research Questions
	Variables Selection
	Measurement Method

	Statistical results of research questions
	Discussion
	Experiment results analysis
	Implications for research

	Threats to Validity
	Internal Validity
	Construct Validity
	External Validity

	Conclusion

